Possible Duplicate:
How to Add a row vector to a column vector like matrix multiplication
I have a nx1
vector and a 1xn
vector. I want to add them in a special manner like matrix multiplication in an efficient manner (vectorized):
Example:
A=[1 2 3]'
B=[4 5 6]
A \odd_add B =
[1+4 1+5 1+6
2+4 2+5 2+6
3+4 3+5 3+6
]
I have used bsxfun
in MATLAB, but I think it is slow. Please help me...
As mentioned by @b3. this would be an appropriate place to use repmat
. However in general, and especially if you are dealing with very large matrices, bsxfun
normally makes a better substitute. In this case:
>> bsxfun(@plus, [1,2,3]', [4,5,6])
returns the same result, using about a third the memory in the large-matrix limit.
bsxfun
basically applies the function in the first argument to every combination of items in the second and third arguments, placing the results in a matrix according to the shape of the input vectors.
I present a comparison of the different methods mentioned here. I am using the TIMEIT function to get robust estimates (takes care of warming up the code, average timing on multiple runs, ..):
function testBSXFUN(N)
%# data
if nargin < 1
N = 500; %# N = 10, 100, 1000, 10000
end
A = (1:N)';
B = (1:N);
%# functions
f1 = @() funcRepmat(A,B);
f2 = @() funcTonyTrick(A,B);
f3 = @() funcBsxfun(A,B);
%# timeit
t(1) = timeit( f1 );
t(2) = timeit( f2 );
t(3) = timeit( f3 );
%# time results
fprintf('N = %d\n', N);
fprintf('REPMAT: %f, TONY_TRICK: %f, BSXFUN: %f\n', t);
%# validation
v{1} = f1();
v{2} = f2();
v{3} = f3();
assert( isequal(v{:}) )
end
where
function C = funcRepmat(A,B)
N = numel(A);
C = repmat(A,1,N) + repmat(B,N,1);
end
function C = funcTonyTrick(A,B)
N = numel(A);
C = A(:,ones(N,1)) + B(ones(N,1),:);
end
function C = funcBsxfun(A,B)
C = bsxfun(@plus, A, B);
end
The timings:
>> for N=[10 100 1000 5000], testBSXFUN(N); end
N = 10
REPMAT: 0.000065, TONY_TRICK: 0.000013, BSXFUN: 0.000031
N = 100
REPMAT: 0.000120, TONY_TRICK: 0.000065, BSXFUN: 0.000085
N = 1000
REPMAT: 0.032988, TONY_TRICK: 0.032947, BSXFUN: 0.010185
N = 5000
REPMAT: 0.810218, TONY_TRICK: 0.824297, BSXFUN: 0.258774
BSXFUN is a clear winner.
In matlab vectorization, there is no substitute for Tony's Trick
in terms of speed in comparison to repmat
or any other built in Matlab function for that matter. I am sure that the following code must be fastest for your purpose.
>> A = [1 2 3]';
>> B = [4 5 6];
>> AB_sum = A(:,ones(3,1)) + B(ones(3,1),:);
The speed differential will be much more apparent (at LEAST an order of magnitude) for larger size of A
and B
. See this test I conducted some time ago to ascertain the superiority of Tony's Trick
over repmat
in terms of time consumption.
REPMAT is your friend:
>> A = [1 2 3]';
>> B = [4 5 6];
>> AplusB = repmat(A, 1, 3) + repmat(B, 3, 1)
AplusB =
5 6 7
6 7 8
7 8 9