I want to make a little update script for a software that runs on a Raspberry Pi and works like a local server. That should connect to a master server in the web to get software updates and also to verify the license of the software.
For that I set up two python scripts. I want these to connect via a TLS socket. Then the client checks the server certificate and the server checks if it's one of the authorized clients. I found a solution for this using twisted on this page.
Now there is a problem left. I want to know which client (depending on the certificate) is establishing the connection. Is there a way to do this in Python 3 with twisted?
I'm happy with every answer.
In a word: yes, this is quite possible, and all the necessary stuff is
ported to python 3 - I tested all the following under Python 3.4 on my Mac and it seems to
work fine.
The short answer is
"use twisted.internet.ssl.Certificate.peerFromTransport
"
but given that a lot of set-up is required to get to the point where that is
possible, I've constructed a fully working example that you should be able to
try out and build upon.
For posterity, you'll first need to generate a few client certificates all
signed by the same CA. You've probably already done this, but so others can
understand the answer and try it out on their own (and so I could test my
answer myself ;-)), they'll need some code like this:
# newcert.py
from twisted.python.filepath import FilePath
from twisted.internet.ssl import PrivateCertificate, KeyPair, DN
def getCAPrivateCert():
privatePath = FilePath(b"ca-private-cert.pem")
if privatePath.exists():
return PrivateCertificate.loadPEM(privatePath.getContent())
else:
caKey = KeyPair.generate(size=4096)
caCert = caKey.selfSignedCert(1, CN="the-authority")
privatePath.setContent(caCert.dumpPEM())
return caCert
def clientCertFor(name):
signingCert = getCAPrivateCert()
clientKey = KeyPair.generate(size=4096)
csr = clientKey.requestObject(DN(CN=name), "sha1")
clientCert = signingCert.signRequestObject(
csr, serialNumber=1, digestAlgorithm="sha1")
return PrivateCertificate.fromCertificateAndKeyPair(clientCert, clientKey)
if __name__ == '__main__':
import sys
name = sys.argv[1]
pem = clientCertFor(name.encode("utf-8")).dumpPEM()
FilePath(name.encode("utf-8") + b".client.private.pem").setContent(pem)
With this program, you can create a few certificates like so:
$ python newcert.py a
$ python newcert.py b
Now you should have a few files you can use:
$ ls -1 *.pem
a.client.private.pem
b.client.private.pem
ca-private-cert.pem
Then you'll want a client which uses one of these certificates, and sends some
data:
# tlsclient.py
from twisted.python.filepath import FilePath
from twisted.internet.endpoints import SSL4ClientEndpoint
from twisted.internet.ssl import (
PrivateCertificate, Certificate, optionsForClientTLS)
from twisted.internet.defer import Deferred, inlineCallbacks
from twisted.internet.task import react
from twisted.internet.protocol import Protocol, Factory
class SendAnyData(Protocol):
def connectionMade(self):
self.deferred = Deferred()
self.transport.write(b"HELLO\r\n")
def connectionLost(self, reason):
self.deferred.callback(None)
@inlineCallbacks
def main(reactor, name):
pem = FilePath(name.encode("utf-8") + b".client.private.pem").getContent()
caPem = FilePath(b"ca-private-cert.pem").getContent()
clientEndpoint = SSL4ClientEndpoint(
reactor, u"localhost", 4321,
optionsForClientTLS(u"the-authority", Certificate.loadPEM(caPem),
PrivateCertificate.loadPEM(pem)),
)
proto = yield clientEndpoint.connect(Factory.forProtocol(SendAnyData))
yield proto.deferred
import sys
react(main, sys.argv[1:])
And finally, a server which can distinguish between them:
# whichclient.py
from twisted.python.filepath import FilePath
from twisted.internet.endpoints import SSL4ServerEndpoint
from twisted.internet.ssl import PrivateCertificate, Certificate
from twisted.internet.defer import Deferred
from twisted.internet.task import react
from twisted.internet.protocol import Protocol, Factory
class ReportWhichClient(Protocol):
def dataReceived(self, data):
peerCertificate = Certificate.peerFromTransport(self.transport)
print(peerCertificate.getSubject().commonName.decode('utf-8'))
self.transport.loseConnection()
def main(reactor):
pemBytes = FilePath(b"ca-private-cert.pem").getContent()
certificateAuthority = Certificate.loadPEM(pemBytes)
myCertificate = PrivateCertificate.loadPEM(pemBytes)
serverEndpoint = SSL4ServerEndpoint(
reactor, 4321, myCertificate.options(certificateAuthority)
)
serverEndpoint.listen(Factory.forProtocol(ReportWhichClient))
return Deferred()
react(main, [])
For simplicity's sake we'll just re-use the CA's own certificate for the
server, but in a more realistic scenario you'd obviously want a more
appropriate certificate.
You can now run whichclient.py
in one window, then python tlsclient.py a;
python tlsclient.py b
in another window, and see whichclient.py
print out
a
and then b
respectively, identifying the clients by the commonName
field in their certificate's subject.
The one caveat here is that you might initially want to put that call to
Certificate.peerFromTransport
into a connectionMade
method; that won't
work.
Twisted does not presently have a callback for "TLS handshake complete";
hopefully it will eventually, but until it does, you have to wait until you've
received some authenticated data from the peer to be sure the handshake has
completed. For almost all applications, this is fine, since by the time you
have received instructions to do anything (download updates, in your case) the
peer must already have sent the certificate.