I am using df.randomSplit() but it is not splitting into equal rows. Is there any other way I can achieve it?
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
In my case I needed balanced (equal sized) partitions in order to perform a specific cross validation experiment.
For that you usually:
- Randomize the dataset
- Apply modulus operation to assign each element to a fold (partition)
After this step you will have to extract each partition using filter
, afaik there is still no transformation to separate a single RDD into many.
Here is some code in scala, it only uses standard spark operations so it should be easy to adapt to python:
val npartitions = 3
val foldedRDD =
// Map each instance with random number
.zipWithIndex
.map ( t => (t._1, t._2, new scala.util.Random(t._2*seed).nextInt()) )
// Random ordering
.sortBy( t => (t._1(m_classIndex), t._3) )
// Assign each instance to fold
.zipWithIndex
.map( t => (t._1, t._2 % npartitions) )
val balancedRDDList =
for (f <- 0 until npartitions)
yield foldedRDD.filter( _._2 == f )