I have a character vector of stock tickers where the ticker name is concatenated to the country in which that ticker is based in the following form: country_name/ticker_name. I am trying to split each string and delete everything from the '/' back, returning a character vector of only the ticker names. Here is an example vector:
sample_string <- c('US/SPY', 'US/AOL', 'US/MTC', 'US/PHA', 'US/PZI',
'US/AOL', 'US/BRCM')
My initial thought would be to use the stringr library. I don't have really any experience with that package, but here is what I was trying:
library(stringr)
split_string <- str_split(sample_string, '/')
But I was unsure how to return only the second element of each list as a single vector.
How would I do this over a large character vector (~105 million entries)?
Some benchmark here including all the methods suggested by @David Arenburg, and another method using str_extract
from stringr
package.
sample_string <- rep(sample_string, 1000000)
library(data.table); library(stringr)
s1 <- function() sub(".*/(.*)", "\\1", sample_string)
s2 <- function() sub(".*/", "", sample_string)
s3 <- function() str_extract(sample_string, "(?<=/)(.*)")
s4 <- function() tstrsplit(sample_string, "/", fixed = TRUE)[[2]]
length(sample_string)
# [1] 7000000
identical(s1(), s2())
# [1] TRUE
identical(s1(), s3())
# [1] TRUE
identical(s1(), s4())
# [1] TRUE
microbenchmark::microbenchmark(s1(), s2(), s3(), s4(), times = 5)
# Unit: seconds
# expr min lq mean median uq max neval
# s1() 3.916555 3.917370 4.046708 3.923246 3.925184 4.551184 5
# s2() 3.584694 3.593755 3.726922 3.610284 3.646449 4.199426 5
# s3() 3.051398 3.062237 3.354410 3.138080 3.722347 3.797985 5
# s4() 1.908283 1.964223 2.349522 2.117521 2.760612 2.996971 5
The tstrsplit
method is the fastest.
Update:
Add another method from @Frank, this comparison is not strictly accurate which depends on the actual data, if there is a lot of duplicated cases as the sample_string
is produced above, the advantage is quite obvious:
s5 <- function() setDT(list(sample_string))[, v := tstrsplit(V1, "/", fixed = TRUE)[[2]], by=V1]$v
identical(s1(), s5())
# [1] TRUE
microbenchmark::microbenchmark(s1(), s2(), s3(), s4(), s5(), times = 5)
# Unit: milliseconds
# expr min lq mean median uq max neval
# s1() 3905.97703 3913.264 3922.8540 3913.4035 3932.2680 3949.3575 5
# s2() 3568.63504 3576.755 3713.7230 3660.5570 3740.8252 4021.8426 5
# s3() 3029.66877 3032.898 3061.0584 3052.6937 3086.9714 3103.0604 5
# s4() 1322.42430 1679.475 1985.5440 1801.9054 1857.8056 3266.1101 5
# s5() 82.71379 101.899 177.8306 121.6682 209.0579 373.8141 5
Some helpful notes about your question: Firstly, there is a str_split_fixed
function in the stringr
package which does what you want it to do by calling lapply.
library(data.table); library(stringr)
sample_string <- c('US/SPY', 'US/AOL', 'US/MTC', 'US/PHA', 'US/PZI',
'US/AOL', 'US/BRCM')
sample_string <- rep(sample_string, 1e5)
split_string <- str_split_fixed(sample_string, '/', 2)[,2]
It works by calling stringi::stri_split_fixed
and is not dissimilar to
do.call("c", lapply(str_split(sample_string, '/'),"[[",2))
Secondly, another way to think about extracting each second element of the list is by doing exactly what tstrsplit
is doing internally.
transpose(strsplit(sample_string, "/", fixed = T))[[2]]
On a total side note, the above should be marginally faster than calling tstrsplit
. This of course, is probably not worth typing at length but it helps to know what the function does.
library(data.table); library(stringr)
s4 <- function() tstrsplit(sample_string, "/", fixed = TRUE)[[2]]
s5 <- function() transpose(strsplit(sample_string, "/", fixed = T))[[2]]
identical(s4(), s5())
microbenchmark::microbenchmark(s4(), s5(), times = 20)
microbenchmark::microbenchmark(s4(), s5(), times = 20)
Unit: milliseconds
expr min lq mean median uq max neval
s4() 161.0744 193.3611 255.8136 234.9945 271.6811 434.7992 20
s5() 140.8569 176.5600 233.3570 194.1676 251.7921 420.3431 20
Regarding this second method, in short, transposing this list of length 7 million, each with 2 elements will convert your result to a list of length 2, each with 7 million elements. You are then extracting the second element of this list.