Start with a small 'sparse' matrix (csr is the best for math):
In [167]: A=sparse.csr_matrix([[1, 2, 3], # Vadim's example
[2, 1, 4],
[0, 2, 2],
[3, 0, 3]])
In [168]: AA=A.A # dense equivalent
In [169]: idx=np.array([[1,1,0,3],[3,0,0,2]]).T # indexes
I'll stick with the numpy version (Pandas is built on top of numpy)
We could take all the row dot products, and select a subset defined by idx
:
In [170]: (AA.dot(AA.T))[idx[:,0], idx[:,1]]
Out[170]: array([18, 16, 14, 6], dtype=int32)
Sparse matrix product (A.dot(A.T)
also works:
In [171]: (A*A.T)[idx[:,0], idx[:,1]]
Out[171]: matrix([[18, 16, 14, 6]], dtype=int32)
Or we can select the rows first, and then take the sum of products. We don't want to use dot
here, since we aren't taking all combinations.
In [172]: (AA[idx[:,0]]*AA[idx[:,1]]).sum(axis=1)
Out[172]: array([18, 16, 14, 6], dtype=int32)
The einsum
version of this calc:
In [180]: np.einsum('ij,ij->i',AA[idx[:,0]],AA[idx[:,1]])
Out[180]: array([18, 16, 14, 6], dtype=int32)
sparse
can do the same (*
is matrix product, .multiply
is element by element).
In [173]: (A[idx[:,0]].multiply(A[idx[:,1]])).sum(axis=1)
Out[173]:
matrix([[18],
[16],
[14],
[ 6]], dtype=int32)
With this small case, the dense versions are faster. Sparse row indexing is slow.
In [181]: timeit np.einsum('ij,ij->i', AA[idx[:,0]], AA[idx[:,1]])
100000 loops, best of 3: 18.1 µs per loop
In [182]: timeit (A[idx[:,0]].multiply(A[idx[:,1]])).sum(axis=1)
1000 loops, best of 3: 1.32 ms per loop
In [184]: timeit (AA.dot(AA.T))[idx[:,0], idx[:,1]]
100000 loops, best of 3: 9.62 µs per loop
In [185]: timeit (A*A.T)[idx[:,0], idx[:,1]]
1000 loops, best of 3: 689 µs per loop
I almost forgot - the iterative versions:
In [191]: timeit [AA[i].dot(AA[j]) for i,j in idx]
10000 loops, best of 3: 38.4 µs per loop
In [192]: timeit [A[i].multiply(A[j]).sum() for i,j in idx]
100 loops, best of 3: 2.58 ms per loop
Row indexing of lil
format matrix is faster
In [207]: Al=A.tolil()
In [208]: timeit A[idx[:,0]]
1000 loops, best of 3: 476 µs per loop
In [209]: timeit Al[idx[:,0]]
1000 loops, best of 3: 234 µs per loop
But by the time it's converted back to csr
for multiplication it might not save time.
===============
In other recent SO questions I've discussed faster ways of indexing sparse rows or columns. But in those the final goal was to sum over a selected set of rows or columns. For that it was actually fastest to use a matrix product - with a matrix of 1s and 0s. Applying that idea here is a little trickier.
Looking at the csr.__getitem__
indexing function, I find that it actually does the A[idx,:]
indexing with a matrix product. It creates an extractor
matrix with function like:
def extractor(indices,N):
"""Return a sparse matrix P so that P*self implements
slicing of the form self[[1,2,3],:]
"""
indptr = np.arange(len(indices)+1, dtype=int)
data = np.ones(len(indices), dtype=int)
shape = (len(indices),N)
return sparse.csr_matrix((data,indices,indptr), shape=shape)
In [328]: %%timeit
.....: A1=extractor(idx[:,0],4)*A
.....: A2=extractor(idx[:,1],4)*A
.....: (A1.multiply(A2)).sum(axis=1)
.....:
1000 loops, best of 3: 1.14 ms per loop
This time is slightly better than that produced with A[idx[:,0],:]
(In[182]
above) - presumably because it is streamlining the action a bit. It should scale in the same way.
This works because idx0
is a boolean matrix derived from [1,1,0,3]
In [330]: extractor(idx[:,0],4).A
Out[330]:
array([[0, 1, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]])
In [296]: A[idx[:,0],:].A
Out[296]:
array([[2, 1, 4],
[2, 1, 4],
[1, 2, 3],
[3, 0, 3]], dtype=int32)
In [331]: (extractor(idx[:,0],4)*A).A
Out[331]:
array([[2, 1, 4],
[2, 1, 4],
[1, 2, 3],
[3, 0, 3]], dtype=int32)
================
In sum, if the problem is too big to use the dense array directly, then be best bet for scaling to a large sparse case is
(A[idx[:,0]].multiply(A[idx[:,1]])).sum(axis=1)
If this is still producing memory errors, then iterate, possibly over groups of the idx
array (or dataframe).
I guess .assign()
and .apply()
(for pandas > 0.16.0) is suitable:
import numpy as np
from pandas import DataFrame
from scipy.sparse import bsr_matrix
df = DataFrame(np.random.randint(4, size=(4, 2)), columns=['Row1', 'Row2'])
A = bsr_matrix([[1, 2, 3],
[2, 1, 4],
[0, 2, 2],
[3, 0, 3]])
A = A.tocsr() # Skip this if your matrix is csc_, csr_, dok_ or lil_matrix
df.assign(Value=df.apply(lambda row: A[row[0]].dot(A[row[1]].transpose())[0, 0], axis=1))
Out[15]:
Row1 Row2 Value
0 1 3 18
1 1 0 16
2 0 0 14
3 3 2 6