PIL Best Way To Replace Color?

2019-01-16 20:25发布

问题:

I am trying to remove a certain color from my image however it's not working as well as I'd hoped. I tried to do the same thing as seen here Using PIL to make all white pixels transparent? however the image quality is a bit lossy so it leaves a little ghost of odd colored pixels around where what was removed. I tried doing something like change pixel if all three values are below 100 but because the image was poor quality the surrounding pixels weren't even black.

Does anyone know of a better way with PIL in Python to replace a color and anything surrounding it? This is probably the only sure fire way I can think of to remove the objects completely however I can't think of a way to do this.

The picture has a white background and text that is black. Let's just say I want to remove the text entirely from the image without leaving any artifacts behind.

Would really appreciate someone's help! Thanks

回答1:

You'll need to represent the image as a 2-dimensional array. This means either making a list of lists of pixels, or viewing the 1-dimensional array as a 2d one with some clever math. Then, for each pixel that is targeted, you'll need to find all surrounding pixels. You could do this with a python generator thus:

def targets(x,y):
    yield (x,y) # Center
    yield (x+1,y) # Left
    yield (x-1,y) # Right
    yield (x,y+1) # Above
    yield (x,y-1) # Below
    yield (x+1,y+1) # Above and to the right
    yield (x+1,y-1) # Below and to the right
    yield (x-1,y+1) # Above and to the left
    yield (x-1,y-1) # Below and to the left

So, you would use it like this:

for x in range(width):
    for y in range(height):
        px = pixels[x][y]
        if px[0] == 255 and px[1] == 255 and px[2] == 255:
            for i,j in targets(x,y):
                newpixels[i][j] = replacementColor


回答2:

The best way to do it is to use the "color to alpha" algorithm used in Gimp to replace a color. It will work perfectly in your case. I reimplemented this algorithm using PIL for an open source python photo processor phatch. You can find the full implementation here. This a pure PIL implementation and it doesn't have other dependences. You can copy the function code and use it. Here is a sample using Gimp:

to

You can apply the color_to_alpha function on the image using black as the color. Then paste the image on a different background color to do the replacement.

By the way, this implementation uses the ImageMath module in PIL. It is much more efficient than accessing pixels using getdata.

EDIT: Here is the full code:

from PIL import Image, ImageMath

def difference1(source, color):
    """When source is bigger than color"""
    return (source - color) / (255.0 - color)

def difference2(source, color):
    """When color is bigger than source"""
    return (color - source) / color


def color_to_alpha(image, color=None):
    image = image.convert('RGBA')
    width, height = image.size

    color = map(float, color)
    img_bands = [band.convert("F") for band in image.split()]

    # Find the maximum difference rate between source and color. I had to use two
    # difference functions because ImageMath.eval only evaluates the expression
    # once.
    alpha = ImageMath.eval(
        """float(
            max(
                max(
                    max(
                        difference1(red_band, cred_band),
                        difference1(green_band, cgreen_band)
                    ),
                    difference1(blue_band, cblue_band)
                ),
                max(
                    max(
                        difference2(red_band, cred_band),
                        difference2(green_band, cgreen_band)
                    ),
                    difference2(blue_band, cblue_band)
                )
            )
        )""",
        difference1=difference1,
        difference2=difference2,
        red_band = img_bands[0],
        green_band = img_bands[1],
        blue_band = img_bands[2],
        cred_band = color[0],
        cgreen_band = color[1],
        cblue_band = color[2]
    )

    # Calculate the new image colors after the removal of the selected color
    new_bands = [
        ImageMath.eval(
            "convert((image - color) / alpha + color, 'L')",
            image = img_bands[i],
            color = color[i],
            alpha = alpha
        )
        for i in xrange(3)
    ]

    # Add the new alpha band
    new_bands.append(ImageMath.eval(
        "convert(alpha_band * alpha, 'L')",
        alpha = alpha,
        alpha_band = img_bands[3]
    ))

    return Image.merge('RGBA', new_bands)

image = color_to_alpha(image, (0, 0, 0, 255))
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image.convert('RGB'), mask=image)


回答3:

Using numpy and PIL:

This loads the image into a numpy array of shape (W,H,3), where W is the width and H is the height. The third axis of the array represents the 3 color channels, R,G,B.

import Image
import numpy as np

orig_color = (255,255,255)
replacement_color = (0,0,0)
img = Image.open(filename).convert('RGB')
data = np.array(img)
data[(data == orig_color).all(axis = -1)] = replacement_color
img2 = Image.fromarray(data, mode='RGB')
img2.show()

Since orig_color is a tuple of length 3, and data has shape (W,H,3), NumPy broadcasts orig_color to an array of shape (W,H,3) to perform the comparison data == orig_color. The result in a boolean array of shape (W,H,3).

(data == orig_color).all(axis = -1) is a boolean array of shape (W,H) which is True wherever the RGB color in data is original_color.



回答4:

#!/usr/bin/python
from PIL import Image
import sys

img = Image.open(sys.argv[1])
img = img.convert("RGBA")

pixdata = img.load()

# Clean the background noise, if color != white, then set to black.
# change with your color
for y in xrange(img.size[1]):
    for x in xrange(img.size[0]):
        if pixdata[x, y] == (255, 255, 255, 255):
            pixdata[x, y] = (0, 0, 0, 255)


回答5:

If the pixels are not easily identifiable e.g you say (r < 100 and g < 100 and b < 100) also doesn't match correctly the black region, it means you have lots of noise.

Best way would be to identify a region and fill it with color you want, you can identify the region manually or may be by edge detection e.g. http://bitecode.co.uk/2008/07/edge-detection-in-python/

or more sophisticated approach would be to use library like opencv (http://opencv.willowgarage.com/wiki/) to identify objects.



回答6:

This is part of my code, the result would like: source

target

import os
import struct
from PIL import Image
def changePNGColor(sourceFile, fromRgb, toRgb, deltaRank = 10):
    fromRgb = fromRgb.replace('#', '')
    toRgb = toRgb.replace('#', '')

    fromColor = struct.unpack('BBB', bytes.fromhex(fromRgb))
    toColor = struct.unpack('BBB', bytes.fromhex(toRgb))

    img = Image.open(sourceFile)
    img = img.convert("RGBA")
    pixdata = img.load()

    for x in range(0, img.size[0]):
        for y in range(0, img.size[1]):
            rdelta = pixdata[x, y][0] - fromColor[0]
            gdelta = pixdata[x, y][0] - fromColor[0]
            bdelta = pixdata[x, y][0] - fromColor[0]
            if abs(rdelta) <= deltaRank and abs(gdelta) <= deltaRank and abs(bdelta) <= deltaRank:
                pixdata[x, y] = (toColor[0] + rdelta, toColor[1] + gdelta, toColor[2] + bdelta, pixdata[x, y][3])

    img.save(os.path.dirname(sourceFile) + os.sep + "changeColor" + os.path.splitext(sourceFile)[1])

if __name__ == '__main__':
    changePNGColor("./ok_1.png", "#000000", "#ff0000")