可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I am trying to remove a certain color from my image however it's not working as well as I'd hoped. I tried to do the same thing as seen here Using PIL to make all white pixels transparent? however the image quality is a bit lossy so it leaves a little ghost of odd colored pixels around where what was removed. I tried doing something like change pixel if all three values are below 100 but because the image was poor quality the surrounding pixels weren't even black.
Does anyone know of a better way with PIL in Python to replace a color and anything surrounding it? This is probably the only sure fire way I can think of to remove the objects completely however I can't think of a way to do this.
The picture has a white background and text that is black. Let's just say I want to remove the text entirely from the image without leaving any artifacts behind.
Would really appreciate someone's help! Thanks
回答1:
You'll need to represent the image as a 2-dimensional array. This means either making a list of lists of pixels, or viewing the 1-dimensional array as a 2d one with some clever math. Then, for each pixel that is targeted, you'll need to find all surrounding pixels. You could do this with a python generator thus:
def targets(x,y):
yield (x,y) # Center
yield (x+1,y) # Left
yield (x-1,y) # Right
yield (x,y+1) # Above
yield (x,y-1) # Below
yield (x+1,y+1) # Above and to the right
yield (x+1,y-1) # Below and to the right
yield (x-1,y+1) # Above and to the left
yield (x-1,y-1) # Below and to the left
So, you would use it like this:
for x in range(width):
for y in range(height):
px = pixels[x][y]
if px[0] == 255 and px[1] == 255 and px[2] == 255:
for i,j in targets(x,y):
newpixels[i][j] = replacementColor
回答2:
The best way to do it is to use the "color to alpha" algorithm used in Gimp to replace a color. It will work perfectly in your case. I reimplemented this algorithm using PIL for an open source python photo processor phatch. You can find the full implementation here. This a pure PIL implementation and it doesn't have other dependences. You can copy the function code and use it. Here is a sample using Gimp:
to
You can apply the color_to_alpha
function on the image using black as the color. Then paste the image on a different background color to do the replacement.
By the way, this implementation uses the ImageMath module in PIL. It is much more efficient than accessing pixels using getdata.
EDIT: Here is the full code:
from PIL import Image, ImageMath
def difference1(source, color):
"""When source is bigger than color"""
return (source - color) / (255.0 - color)
def difference2(source, color):
"""When color is bigger than source"""
return (color - source) / color
def color_to_alpha(image, color=None):
image = image.convert('RGBA')
width, height = image.size
color = map(float, color)
img_bands = [band.convert("F") for band in image.split()]
# Find the maximum difference rate between source and color. I had to use two
# difference functions because ImageMath.eval only evaluates the expression
# once.
alpha = ImageMath.eval(
"""float(
max(
max(
max(
difference1(red_band, cred_band),
difference1(green_band, cgreen_band)
),
difference1(blue_band, cblue_band)
),
max(
max(
difference2(red_band, cred_band),
difference2(green_band, cgreen_band)
),
difference2(blue_band, cblue_band)
)
)
)""",
difference1=difference1,
difference2=difference2,
red_band = img_bands[0],
green_band = img_bands[1],
blue_band = img_bands[2],
cred_band = color[0],
cgreen_band = color[1],
cblue_band = color[2]
)
# Calculate the new image colors after the removal of the selected color
new_bands = [
ImageMath.eval(
"convert((image - color) / alpha + color, 'L')",
image = img_bands[i],
color = color[i],
alpha = alpha
)
for i in xrange(3)
]
# Add the new alpha band
new_bands.append(ImageMath.eval(
"convert(alpha_band * alpha, 'L')",
alpha = alpha,
alpha_band = img_bands[3]
))
return Image.merge('RGBA', new_bands)
image = color_to_alpha(image, (0, 0, 0, 255))
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image.convert('RGB'), mask=image)
回答3:
Using numpy and PIL:
This loads the image into a numpy array of shape (W,H,3)
, where W
is the
width and H
is the height. The third axis of the array represents the 3 color
channels, R,G,B
.
import Image
import numpy as np
orig_color = (255,255,255)
replacement_color = (0,0,0)
img = Image.open(filename).convert('RGB')
data = np.array(img)
data[(data == orig_color).all(axis = -1)] = replacement_color
img2 = Image.fromarray(data, mode='RGB')
img2.show()
Since orig_color
is a tuple of length 3, and data
has
shape (W,H,3)
, NumPy
broadcasts
orig_color
to an array of shape (W,H,3)
to perform the comparison data ==
orig_color
. The result in a boolean array of shape (W,H,3)
.
(data == orig_color).all(axis = -1)
is a boolean array of shape (W,H)
which
is True wherever the RGB color in data
is original_color
.
回答4:
#!/usr/bin/python
from PIL import Image
import sys
img = Image.open(sys.argv[1])
img = img.convert("RGBA")
pixdata = img.load()
# Clean the background noise, if color != white, then set to black.
# change with your color
for y in xrange(img.size[1]):
for x in xrange(img.size[0]):
if pixdata[x, y] == (255, 255, 255, 255):
pixdata[x, y] = (0, 0, 0, 255)
回答5:
If the pixels are not easily identifiable e.g you say (r < 100 and g < 100 and b < 100) also doesn't match correctly the black region, it means you have lots of noise.
Best way would be to identify a region and fill it with color you want, you can identify the region manually or may be by edge detection e.g. http://bitecode.co.uk/2008/07/edge-detection-in-python/
or more sophisticated approach would be to use library like opencv (http://opencv.willowgarage.com/wiki/) to identify objects.
回答6:
This is part of my code, the result would like:
source
target
import os
import struct
from PIL import Image
def changePNGColor(sourceFile, fromRgb, toRgb, deltaRank = 10):
fromRgb = fromRgb.replace('#', '')
toRgb = toRgb.replace('#', '')
fromColor = struct.unpack('BBB', bytes.fromhex(fromRgb))
toColor = struct.unpack('BBB', bytes.fromhex(toRgb))
img = Image.open(sourceFile)
img = img.convert("RGBA")
pixdata = img.load()
for x in range(0, img.size[0]):
for y in range(0, img.size[1]):
rdelta = pixdata[x, y][0] - fromColor[0]
gdelta = pixdata[x, y][0] - fromColor[0]
bdelta = pixdata[x, y][0] - fromColor[0]
if abs(rdelta) <= deltaRank and abs(gdelta) <= deltaRank and abs(bdelta) <= deltaRank:
pixdata[x, y] = (toColor[0] + rdelta, toColor[1] + gdelta, toColor[2] + bdelta, pixdata[x, y][3])
img.save(os.path.dirname(sourceFile) + os.sep + "changeColor" + os.path.splitext(sourceFile)[1])
if __name__ == '__main__':
changePNGColor("./ok_1.png", "#000000", "#ff0000")