How can I select an exact number of random rows from a DataFrame efficiently? The data contains an index column that can be used. If I have to use maximum size, what is more efficient, count() or max() on the index column?
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
A possible approach is to calculate the number of rows using .count()
, then use sample()
from python
's random library to generate a random sequence of arbitrary length from this range. Lastly use the resulting list of numbers vals
to subset your index column.
import random
def sampler(df, col, records):
# Calculate number of rows
colmax = df.count()
# Create random sample from range
vals = random.sample(range(1, colmax), records)
# Use 'vals' to filter DataFrame using 'isin'
return df.filter(df[col].isin(vals))
Example:
df = sc.parallelize([(1,1),(2,1),
(3,1),(4,0),
(5,0),(6,1),
(7,1),(8,0),
(9,0),(10,1)]).toDF(["a","b"])
sampler(df,"a",3).show()
+---+---+
| a| b|
+---+---+
| 3| 1|
| 4| 0|
| 6| 1|
+---+---+