I have these functions to remove a node from my binary search tree:
bool collection::removeFromTree(const char name[])
{
for (treeNode * curr = root; curr;)
{
int8_t result = strcmp(name, curr->item->getName());
if (result == 0)
{
deleteNode(curr);
return true;
}
else if (result < 0)
curr = curr->left;
else if (result > 0)
curr = curr->right;
}
return false;
}
void collection::deleteNode(treeNode *& goneNode)
{
//if it's a leaf
if (!goneNode->left && !goneNode->right)
{
delete goneNode; //node's destructor gets invoked
goneNode = nullptr;
}
//if it has right child
else if (!goneNode->left)
{
goneNode = goneNode->right;
}
//if it has left child
else if (!goneNode->right)
{
goneNode = goneNode->left;
}
//if it has both children
else
{
treeNode * prev = nullptr;
treeNode * curr = goneNode->right;
while (curr->left)
{
prev = curr;
curr = curr->left;
}
//prev points to the copy over data
delete goneNode->item;
if (!prev)
{
goneNode->item = curr->item;
goneNode->right = curr->right;
curr->item = nullptr;
}
else
{
goneNode->item = curr->item;
curr->item = nullptr;
prev->left = curr->right;
}
}
}
This runs fine, but when I try to list all the elements in my tree after deleting a node (with these functions):
void collection::displayByName() const
{
std::cout << std::endl
<< "========================================" << std::endl;
//display the tree inorder
listAll(root);
}
void collection::listAll(const treeNode * const & root) const
{
if (root)
{
std::cout << *(root->item) << std::endl
<< "========================================" << std::endl;
listAll(root->left);
listAll(root->right);
}
}
I receive this error:
And when I quit the program after deleting a node (invoking these destructors):
collection::~collection()
{
delete root;
}
collection::treeNode::~treeNode()
{
delete left;
delete right;
}
I recieve this error:
Any suggestions would be greatly appreciated because I see no reason for my listAll()
function to be calling nodes that I've already deleted.
By the way, this is my struct for my treeNode:
struct treeNode
{
treeNode();
treeNode(vendor *& item);
~treeNode();
vendor * item;
treeNode *left, *right;
};
treeNode * root; //the bst
hashNode ** table; //the hash table
uint8_t capacity;
uint8_t size;
const static uint8_t INIT_CAP = 20;
When you need to remove a node from a singly linked list or a tree, I find using a pointer to pointer is handy. Namely, if we have a treeNode** ptr;
, then *ptr
is the pointer to our node. So, if ptr = &root
, then *ptr = nullptr
sets root
to nullptr
.
I removed the deleteNode
function and threw its logic in the removeFromTree
function.
bool collection::removeFromTree(const char name[])
{
treeNode** ptr = &root;
Instead of being a pointer to treeNode
, ptr
will point to a treeNode*
inside the tree structure. This way, we can modify the pointer that led us to the current node. The lines marked //same as before
have the same logic you were using, just possibly modified to account for the fact ptr
has another level of dereferencing to do.
int result; //same as before
while (*ptr) //While we haven't hit a dead end
{
result = strcmp(name, (*ptr)->item->getName()); //same as before
if (result < 0) //same as before
ptr = &((*ptr)->left); //same as before
else if (result > 0) //same as before
ptr = &((*ptr)->right); //same as before
else //begin deleteNode() logic
{
if ((*ptr)->left && (*ptr)->right) //two children
{
Here, we use pointers to member because the alternative was a conditional operator on every line. If a node has two children, we need to find either the rightmost node on the left side, or the leftmost node on the right side. That's the node we can replace the current node with.
treeNode* treeNode::*dir = some_condition ? &treeNode::right : &treeNode::left; //pointer to treeNode member of type treeNode*
treeNode* treeNode::*ndir = some_condition ? &treeNode::left : &treeNode::right; //pointer to treeNode member of type treeNode*
dir
now either points to left
or right
, which is the direction we are searching the tree for. ndir
is the opposite direction. So, if we want the rightmost node on the left side, (*ptr)->*dir == (*ptr)->left
and (*ptr->*ndir == (*ptr)->right
. If we want the leftmost right node, it would be reversed. This is just a more complicated way to do less work, really. It shouldn't be hard to remove. some_condition
is just either true
or false
. true
means the left side of the tree (from the current node) loses a node, and false
means the right side does.
treeNode** replacement = &((*ptr)->*ndir); //the node to replace the current one with
while ((*replacement)->*dir) //While we aren't at the edge
replacement = &((*replacement)->*dir);
This loops until *replacement
is the node we need to replace *ptr
with.
treeNode* rep_branch = (*replacement)->*ndir; //If the replacement node had a child, this is now it
(*replacement)->left = (*ptr)->left; //Copy current to replacement
(*replacement)->right = (*ptr)->right; //Copy current to replacement
(*ptr)->left = nullptr; //null out current in case of destructor
(*ptr)->right = nullptr; //null out current in case of destructor
Now, the replacement node is pointing to the node-to-be-deleted's children, and our soon to be expired node has no children anymore. Now, it's safe to delete the unwanted node. If the node class had a destructor to delete its children, the left
and right
pointers were set to nullptr
just in case.
delete *ptr; //delete unwanted node
*ptr = *replacement; //replacement node has taken the unwanted node's place in the tree
*replacement = rep_branch; //The replacement's child takes its own place
}
This completes the tree's structure. Wherever the unwanted node was, the replacement node has taken its place. And because the replacement node was required to be an edge node, it had at most one child. We just replace it with the child.
else if ((*ptr)->left) //one child on left
{
treeNode* current = *ptr;
*ptr = (*ptr)->left; //replace current with left
current->left = nullptr; //null out for safety
delete current;
}
else if ((*ptr)->right) //one child on right
{
treeNode* current = *ptr;
*ptr = (*ptr)->right; //replace current with right
current->right = nullptr; //null out for safety
delete current;
}
else //no children
{
delete *ptr;
*ptr = nullptr;
}
return true; //yay it's over
}
}
return false; //never found it
}
The rest is fairly straightforward, just replacing easier nodes and returning. Hopefully this gives you some ideas about how to approach problems like this, and the occasional uses of some of these structures. This is what I meant about using treeNode**
over treeNode*
for operations like this.