Given series of integers having relation where a number is equal to sum of previous 2 numbers and starting integer is 1
Series ->1,2,3,5,8,13,21,34,55
find the number of ways such that sum of k elements equal to p.We can use an element any number of times.
p=8
k=4.
So,number of ways would be 4.Those are,
1,1,1,5
1,1,3,3
1,2,2,3
2,2,2,2
I am able to sove this question through recursion.I sense dynamic programming here but i am not getting how to do it.Can it be done in much lesser time???
EDIT I forgot to mention that the sequence of the numbers does not matter and will be counted once. for ex=3->(1,2)and(2,1).here number of ways would be 1 only.
EDIT: Poster has changed the original problem since this was posted. My algorithm still works, but maybe can be improved upon. Original problem had n arbitrary input numbers (he has now modified it to be a Fibonacci series). To apply my algorithm to the modified post, truncate the series by taking only elements less than p (assume there are n of them).
Here's an n^(k/2)
algorithm. (n
is the number of elements in the series)
Use a table of length p
, such that table[i]
contains all combinations of k/2
elements that sum to i
. For example, in the example data that you provided, table[4]
contains {1,3}
and {2,2}
.
EDIT: If the space is prohibitive, this same algorithm can be done with an ordered linked lists, where you only store the non-empty table entries. The linked list has to be both directions: forward and backwards, which makes the final step of the algorithm cleaner.
Once this table is computed, then we get all solutions by combining every table[j]
with every table[p-j]
, whenever both are non-empty.
To get the table, initialize the entire thing to empty. Then:
For i_1 = 0 to n-1:
For i_2 = i_1 to n-1:
...
For i_k/2 = i_k/2-1 to n-1:
sum = series[i_1] + ... + series[i_k/2]
if sum <= p:
store {i_1, i_2, ... , i_k/2 } in table[sum]
This "variable number of loops" looks impossible to implement, but actually it can be done with an array of length k/2
that keeps track of where each i_` is.
Let's go back to your data and see how our table would look:
table[2] = {1,1}
table[3] = {1,2}
table[4] = {1,3} and {2,2}
table[5] = {2,3}
table[6] = {1,5}
table[7] = {2,5}
table[8] = {3,5}
Solutions are found by combining table[2]
with table[6]
, table[3]
with table[5]
, and table[4]
with table[4]
. Thus, solutions are: {1,1,1,5} {1,2,2,3}, {1,1,3,3}, {2,2,2,2}, {1,3,2,2}.
You can use dynamic programming. Let C(p, k)
be the number of ways that sum k
element equal to p
and a
be the array of elements. Then
C(p, k) = C(p - a[0], k - 1) + C(p - a[1], k - 1) + .... + C(p - a[n-1], k - 1)
Then, you can use memorization to speed up your code.
Hint:
Your problem is well-known. It is the sum set problem, a variation of knapsack problem. Check this pretty good explanation. sum-set problem