I just read this blog http://lemire.me/blog/archives/2012/06/20/do-not-waste-time-with-stl-vectors/ comparing performance of operator[]
assignment and push_back
on memory pre-reserved std::vector
and I decided to try it myself. The operation is simple:
// for vector
bigarray.reserve(N);
// START TIME TRACK
for(int k = 0; k < N; ++k)
// for operator[]:
// bigarray[k] = k;
// for push_back
bigarray.push_back(k);
// END TIME TRACK
// do some dummy operations to prevent compiler optimize
long sum = accumulate(begin(bigarray), end(array),0 0);
And here is the result:
~/t/benchmark> icc 1.cpp -O3 -std=c++11
~/t/benchmark> ./a.out
[ 1.cpp: 52] 0.789123s --> C++ new
[ 1.cpp: 52] 0.774049s --> C++ new
[ 1.cpp: 66] 0.351176s --> vector
[ 1.cpp: 80] 1.801294s --> reserve + push_back
[ 1.cpp: 94] 1.753786s --> reserve + emplace_back
[ 1.cpp: 107] 2.815756s --> no reserve + push_back
~/t/benchmark> clang++ 1.cpp -std=c++11 -O3
~/t/benchmark> ./a.out
[ 1.cpp: 52] 0.592318s --> C++ new
[ 1.cpp: 52] 0.566979s --> C++ new
[ 1.cpp: 66] 0.270363s --> vector
[ 1.cpp: 80] 1.763784s --> reserve + push_back
[ 1.cpp: 94] 1.761879s --> reserve + emplace_back
[ 1.cpp: 107] 2.815596s --> no reserve + push_back
~/t/benchmark> g++ 1.cpp -O3 -std=c++11
~/t/benchmark> ./a.out
[ 1.cpp: 52] 0.617995s --> C++ new
[ 1.cpp: 52] 0.601746s --> C++ new
[ 1.cpp: 66] 0.270533s --> vector
[ 1.cpp: 80] 1.766538s --> reserve + push_back
[ 1.cpp: 94] 1.998792s --> reserve + emplace_back
[ 1.cpp: 107] 2.815617s --> no reserve + push_back
For all the compilers, vector
with operator[]
is much faster than raw pointer with operator[]
. This led to the first question: why? The second question is, I have already "reserved" the memory, so why opeator[]
is faster?
The next question is, since the memory is already allocated, why push_back
is times slower than operator[]
?
The test code is attached below:
#include <iostream>
#include <iomanip>
#include <vector>
#include <numeric>
#include <chrono>
#include <string>
#include <cstring>
#define PROFILE(BLOCK, ROUTNAME) ProfilerRun([&](){do {BLOCK;} while(0);}, \
ROUTNAME, __FILE__, __LINE__);
template <typename T>
void ProfilerRun (T&& func, const std::string& routine_name = "unknown",
const char* file = "unknown", unsigned line = 0)
{
using std::chrono::duration_cast;
using std::chrono::microseconds;
using std::chrono::steady_clock;
using std::cerr;
using std::endl;
steady_clock::time_point t_begin = steady_clock::now();
// Call the function
func();
steady_clock::time_point t_end = steady_clock::now();
cerr << "[" << std::setw (20)
<< (std::strrchr (file, '/') ?
std::strrchr (file, '/') + 1 : file)
<< ":" << std::setw (5) << line << "] "
<< std::setw (10) << std::setprecision (6) << std::fixed
<< static_cast<float> (duration_cast<microseconds>
(t_end - t_begin).count()) / 1e6
<< "s --> " << routine_name << endl;
cerr.unsetf (std::ios_base::floatfield);
}
using namespace std;
const int N = (1 << 29);
int routine1()
{
int sum;
int* bigarray = new int[N];
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray[k] = k;
}, "C++ new");
sum = std::accumulate (bigarray, bigarray + N, 0);
delete [] bigarray;
return sum;
}
int routine2()
{
int sum;
vector<int> bigarray (N);
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray[k] = k;
}, "vector");
sum = std::accumulate (begin (bigarray), end (bigarray), 0);
return sum;
}
int routine3()
{
int sum;
vector<int> bigarray;
bigarray.reserve (N);
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray.push_back (k);
}, "reserve + push_back");
sum = std::accumulate (begin (bigarray), end (bigarray), 0);
return sum;
}
int routine4()
{
int sum;
vector<int> bigarray;
bigarray.reserve (N);
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray.emplace_back(k);
}, "reserve + emplace_back");
sum = std::accumulate (begin (bigarray), end (bigarray), 0);
return sum;
}
int routine5()
{
int sum;
vector<int> bigarray;
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray.push_back (k);
}, "no reserve + push_back");
sum = std::accumulate (begin (bigarray), end (bigarray), 0);
return sum;
}
int main()
{
long s0 = routine1();
long s1 = routine1();
long s2 = routine2();
long s3 = routine3();
long s4 = routine4();
long s5 = routine5();
return int (s1 + s2);
}
As Yakk and me have found out, there might be another interesting factor that contributes to the apparent slowness of push_back
.
The first interesting observation is that in the original test, using new
and operating on a raw array is slower than using vector<int> bigarray(N);
and operator[]
-- more than a factor 2. Even more interesting is that you can get the same performance for both by inserting an additional memset
for the raw array variant:
int routine1_modified()
{
int sum;
int* bigarray = new int[N];
memset(bigarray, 0, sizeof(int)*N);
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray[k] = k;
}, "C++ new");
sum = std::accumulate (bigarray, bigarray + N, 0);
delete [] bigarray;
return sum;
}
The conclusion of course is, that PROFILE
measures something different than expected. Yakk and me guess it has something to do with memory management; from Yakk's comment to the OP:
resize
will touch the entire block of memory. reserve
will allocate without touching. If you have a lazy allocator that doesn't fetch or assign physical memory pages until accessed, reserve
on an empty vector can be nearly free (doesn't even have to find physical memory for the pages!) until you write to the pages (at which point, they have to be found).
I thought of something similar, so tried a small test for this hypothesis by touching certain pages with a "strided memset" (a profiling tool might get more reliable results):
int routine1_modified2()
{
int sum;
int* bigarray = new int[N];
for(int k = 0; k < N; k += PAGESIZE*2/sizeof(int))
bigarray[k] = 0;
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray[k] = k;
}, "C++ new");
sum = std::accumulate (bigarray, bigarray + N, 0);
delete [] bigarray;
return sum;
}
By changing the stride from every page half to every 4th page to leaving it out completely, we get a nice transition of the timings from the vector<int> bigarray(N);
case to the new int[N]
case where no memset
has been used.
In my opinion, that's a strong hint that memory management is a major contributor to the measurement results.
Another issue is the branching in push_back
. It is claimed in many answers that this is a / the major reason why push_back
is much slower as compared to using operator[]
. Indeed, comparing the raw-pointer w/o memset to using reserve
+ push_back
, the former is two times faster.
Similarly, if we add a bit of UB (but check the results later):
int routine3_modified()
{
int sum;
vector<int> bigarray;
bigarray.reserve (N);
memset(bigarray.data(), 0, sizeof(int)*N); // technically, it's UB
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
bigarray.push_back (k);
}, "reserve + push_back");
sum = std::accumulate (begin (bigarray), end (bigarray), 0);
return sum;
}
this modified version is about 2 times slower than using new
+ a full memset
. So it seems whatever the invocation of push_back
does, it results in a factor 2
slowdown when compared to just setting the element (via operator[]
in both the vector
and raw array case).
But is it the branching required in push_back
, or the additional operation?
// pseudo-code
void push_back(T const& p)
{
if(size() == capacity())
{
resize( size() < 10 ? 10 : size()*2 );
}
(*this)[size()] = p; // actually using the allocator
++m_end;
}
It is indeed that simple, see e.g. libstdc++'s implementation.
I've tested it by using the vector<int> bigarray(N);
+ operator[]
variant, and inserting a function call that mimics the behaviour of push_back
:
unsigned x = 0;
void silly_branch(int k)
{
if(k == x)
{
x = x < 10 ? 10 : x*2;
}
}
int routine2_modified()
{
int sum;
vector<int> bigarray (N);
PROFILE (
{
for (unsigned int k = 0; k < N; ++k)
{
silly_branch(k);
bigarray[k] = k;
}
}, "vector");
sum = std::accumulate (begin (bigarray), end (bigarray), 0);
return sum;
}
Even when declaring x
as volatile, this only has 1 % influence on the measurement. Of course, you had to verify that the branch is actually in the opcode, but my assembler knowledge doesn't allow me to verify that (at -O3
).
The interesting point now is what happens when I add an increment to silly_branch
:
unsigned x = 0;
void silly_branch(int k)
{
if(k == x)
{
x = x < 10 ? 10 : x*2;
}
++x;
}
Now, the modified routine2_modified
runs 2 times slower than the original routine2
, being on par with the proposed routine3_modified
above that includes UB to commit the memory pages. I don't find that particularly surprising, as it adds another write to every write in the loop, so we have two times the work and two times the duration.
Conclusion
Well you had to carefully look at the assembly and profiling tools to verify the hypotheses of memory management and the additional write is a good hypothesis ("correct"). But I think the hints are strong enough to claim that there's something more complicated going on than just a branch which makes push_back
slower.
Here's the full test code:
#include <iostream>
#include <iomanip>
#include <vector>
#include <numeric>
#include <chrono>
#include <string>
#include <cstring>
#define PROFILE(BLOCK, ROUTNAME) ProfilerRun([&](){do {BLOCK;} while(0);}, \
ROUTNAME, __FILE__, __LINE__);
//#define PROFILE(BLOCK, ROUTNAME) BLOCK
template <typename T>
void ProfilerRun (T&& func, const std::string& routine_name = "unknown",
const char* file = "unknown", unsigned line = 0)
{
using std::chrono::duration_cast;
using std::chrono::microseconds;
using std::chrono::steady_clock;
using std::cerr;
using std::endl;
steady_clock::time_point t_begin = steady_clock::now();
// Call the function
func();
steady_clock::time_point t_end = steady_clock::now();
cerr << "[" << std::setw (20)
<< (std::strrchr (file, '/') ?
std::strrchr (file, '/') + 1 : file)
<< ":" << std::setw (5) << line << "] "
<< std::setw (10) << std::setprecision (6) << std::fixed
<< static_cast<float> (duration_cast<microseconds>
(t_end - t_begin).count()) / 1e6
<< "s --> " << routine_name << endl;
cerr.unsetf (std::ios_base::floatfield);
}
using namespace std;
constexpr int N = (1 << 28);
constexpr int PAGESIZE = 4096;
uint64_t __attribute__((noinline)) routine1()
{
uint64_t sum;
int* bigarray = new int[N];
PROFILE (
{
for (int k = 0, *p = bigarray; p != bigarray+N; ++p, ++k)
*p = k;
}, "new (routine1)");
sum = std::accumulate (bigarray, bigarray + N, 0ULL);
delete [] bigarray;
return sum;
}
uint64_t __attribute__((noinline)) routine2()
{
uint64_t sum;
int* bigarray = new int[N];
memset(bigarray, 0, sizeof(int)*N);
PROFILE (
{
for (int k = 0, *p = bigarray; p != bigarray+N; ++p, ++k)
*p = k;
}, "new + full memset (routine2)");
sum = std::accumulate (bigarray, bigarray + N, 0ULL);
delete [] bigarray;
return sum;
}
uint64_t __attribute__((noinline)) routine3()
{
uint64_t sum;
int* bigarray = new int[N];
for(int k = 0; k < N; k += PAGESIZE/2/sizeof(int))
bigarray[k] = 0;
PROFILE (
{
for (int k = 0, *p = bigarray; p != bigarray+N; ++p, ++k)
*p = k;
}, "new + strided memset (every page half) (routine3)");
sum = std::accumulate (bigarray, bigarray + N, 0ULL);
delete [] bigarray;
return sum;
}
uint64_t __attribute__((noinline)) routine4()
{
uint64_t sum;
int* bigarray = new int[N];
for(int k = 0; k < N; k += PAGESIZE/1/sizeof(int))
bigarray[k] = 0;
PROFILE (
{
for (int k = 0, *p = bigarray; p != bigarray+N; ++p, ++k)
*p = k;
}, "new + strided memset (every page) (routine4)");
sum = std::accumulate (bigarray, bigarray + N, 0ULL);
delete [] bigarray;
return sum;
}
uint64_t __attribute__((noinline)) routine5()
{
uint64_t sum;
int* bigarray = new int[N];
for(int k = 0; k < N; k += PAGESIZE*2/sizeof(int))
bigarray[k] = 0;
PROFILE (
{
for (int k = 0, *p = bigarray; p != bigarray+N; ++p, ++k)
*p = k;
}, "new + strided memset (every other page) (routine5)");
sum = std::accumulate (bigarray, bigarray + N, 0ULL);
delete [] bigarray;
return sum;
}
uint64_t __attribute__((noinline)) routine6()
{
uint64_t sum;
int* bigarray = new int[N];
for(int k = 0; k < N; k += PAGESIZE*4/sizeof(int))
bigarray[k] = 0;
PROFILE (
{
for (int k = 0, *p = bigarray; p != bigarray+N; ++p, ++k)
*p = k;
}, "new + strided memset (every 4th page) (routine6)");
sum = std::accumulate (bigarray, bigarray + N, 0ULL);
delete [] bigarray;
return sum;
}
uint64_t __attribute__((noinline)) routine7()
{
uint64_t sum;
vector<int> bigarray (N);
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray[k] = k;
}, "vector, using ctor to initialize (routine7)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine8()
{
uint64_t sum;
vector<int> bigarray;
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray.push_back (k);
}, "vector (+ no reserve) + push_back (routine8)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine9()
{
uint64_t sum;
vector<int> bigarray;
bigarray.reserve (N);
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray.push_back (k);
}, "vector + reserve + push_back (routine9)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine10()
{
uint64_t sum;
vector<int> bigarray;
bigarray.reserve (N);
memset(bigarray.data(), 0, sizeof(int)*N);
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray.push_back (k);
}, "vector + reserve + memset (UB) + push_back (routine10)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
template<class T>
void __attribute__((noinline)) adjust_size(std::vector<T>& v, int k, double factor)
{
if(k >= v.size())
{
v.resize(v.size() < 10 ? 10 : k*factor);
}
}
uint64_t __attribute__((noinline)) routine11()
{
uint64_t sum;
vector<int> bigarray;
PROFILE (
{
for (int k = 0; k < N; ++k)
{
adjust_size(bigarray, k, 1.5);
bigarray[k] = k;
}
}, "vector + custom emplace_back @ factor 1.5 (routine11)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine12()
{
uint64_t sum;
vector<int> bigarray;
PROFILE (
{
for (int k = 0; k < N; ++k)
{
adjust_size(bigarray, k, 2);
bigarray[k] = k;
}
}, "vector + custom emplace_back @ factor 2 (routine12)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine13()
{
uint64_t sum;
vector<int> bigarray;
PROFILE (
{
for (int k = 0; k < N; ++k)
{
adjust_size(bigarray, k, 3);
bigarray[k] = k;
}
}, "vector + custom emplace_back @ factor 3 (routine13)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine14()
{
uint64_t sum;
vector<int> bigarray;
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray.emplace_back (k);
}, "vector (+ no reserve) + emplace_back (routine14)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine15()
{
uint64_t sum;
vector<int> bigarray;
bigarray.reserve (N);
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray.emplace_back (k);
}, "vector + reserve + emplace_back (routine15)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
uint64_t __attribute__((noinline)) routine16()
{
uint64_t sum;
vector<int> bigarray;
bigarray.reserve (N);
memset(bigarray.data(), 0, sizeof(bigarray[0])*N);
PROFILE (
{
for (int k = 0; k < N; ++k)
bigarray.emplace_back (k);
}, "vector + reserve + memset (UB) + emplace_back (routine16)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
unsigned x = 0;
template<class T>
void /*__attribute__((noinline))*/ silly_branch(std::vector<T>& v, int k)
{
if(k == x)
{
x = x < 10 ? 10 : x*2;
}
//++x;
}
uint64_t __attribute__((noinline)) routine17()
{
uint64_t sum;
vector<int> bigarray(N);
PROFILE (
{
for (int k = 0; k < N; ++k)
{
silly_branch(bigarray, k);
bigarray[k] = k;
}
}, "vector, using ctor to initialize + silly branch (routine17)");
sum = std::accumulate (begin (bigarray), end (bigarray), 0ULL);
return sum;
}
template<class T, int N>
constexpr int get_extent(T(&)[N])
{ return N; }
int main()
{
uint64_t results[] = {routine2(),
routine1(),
routine2(),
routine3(),
routine4(),
routine5(),
routine6(),
routine7(),
routine8(),
routine9(),
routine10(),
routine11(),
routine12(),
routine13(),
routine14(),
routine15(),
routine16(),
routine17()};
std::cout << std::boolalpha;
for(int i = 1; i < get_extent(results); ++i)
{
std::cout << i << ": " << (results[0] == results[i]) << "\n";
}
std::cout << x << "\n";
}
A sample run, on an old & slow computer; note:
N == 2<<28
, not 2<<29
as in the OP
- compiled with g++4.9 20131022 with
-std=c++11 -O3 -march=native
[ temp.cpp: 71] 0.654927s --> new + full memset (routine2)
[ temp.cpp: 54] 1.042405s --> new (routine1)
[ temp.cpp: 71] 0.605061s --> new + full memset (routine2)
[ temp.cpp: 89] 0.597487s --> new + strided memset (every page half) (routine3)
[ temp.cpp: 107] 0.601271s --> new + strided memset (every page) (routine4)
[ temp.cpp: 125] 0.783610s --> new + strided memset (every other page) (routine5)
[ temp.cpp: 143] 0.903038s --> new + strided memset (every 4th page) (routine6)
[ temp.cpp: 157] 0.602401s --> vector, using ctor to initialize (routine7)
[ temp.cpp: 170] 3.811291s --> vector (+ no reserve) + push_back (routine8)
[ temp.cpp: 184] 2.091391s --> vector + reserve + push_back (routine9)
[ temp.cpp: 199] 1.375837s --> vector + reserve + memset (UB) + push_back (routine10)
[ temp.cpp: 224] 8.738293s --> vector + custom emplace_back @ factor 1.5 (routine11)
[ temp.cpp: 240] 5.513803s --> vector + custom emplace_back @ factor 2 (routine12)
[ temp.cpp: 256] 5.150388s --> vector + custom emplace_back @ factor 3 (routine13)
[ temp.cpp: 269] 3.789820s --> vector (+ no reserve) + emplace_back (routine14)
[ temp.cpp: 283] 2.090259s --> vector + reserve + emplace_back (routine15)
[ temp.cpp: 298] 1.288740s --> vector + reserve + memset (UB) + emplace_back (routine16)
[ temp.cpp: 325] 0.611168s --> vector, using ctor to initialize + silly branch (routine17)
1: true
2: true
3: true
4: true
5: true
6: true
7: true
8: true
9: true
10: true
11: true
12: true
13: true
14: true
15: true
16: true
17: true
335544320