Load Naïve Bayes model in java code using weka jar

2019-09-08 12:41发布

问题:

I have used weka and made a Naive Bayes classifier, by using weka GUI. Then I have saved this model by following this tutorial. Now I want to load this model through Java code but I am unable to find any way to load a saved model using weka.

This is my requirement that I have to made model separately and then use it in a separate program.

If anyone can guide me in this regard I will be thankful to you.

回答1:

You can easily load a saved model in java using this command:

Classifier myCls = (Classifier) weka.core.SerializationHelper.read(pathToModel);

For a complete workflow in Java I wrote the following article in SO Documentation, now copied here:

Text Classification in Weka

Text Classification with LibLinear

  • Create training instances from .arff file

    private static Instances getDataFromFile(String path) throws Exception{
    
        DataSource source = new DataSource(path);
        Instances data = source.getDataSet();
    
        if (data.classIndex() == -1){
            data.setClassIndex(data.numAttributes()-1);
            //last attribute as class index
        }
    
        return data;    
    }
    

Instances trainingData = getDataFromFile(pathToArffFile);
  • Use StringToWordVector to transform your string attributes to number representation:

    • Important features of this filter:

      1. tf-idf representation
      2. stemming
      3. lowercase words
      4. stopwords
      5. n-gram representation*

     

    StringToWordVector() filter = new StringToWordVector();    
    filter.setWordsToKeep(1000000);
    if(useIdf){
        filter.setIDFTransform(true);
    }
    filter.setTFTransform(true);
    filter.setLowerCaseTokens(true);
    filter.setOutputWordCounts(true);
    filter.setMinTermFreq(minTermFreq);
    filter.setNormalizeDocLength(new SelectedTag(StringToWordVector.FILTER_NORMALIZE_ALL,StringToWordVector.TAGS_FILTER));
    NGramTokenizer t = new NGramTokenizer();
    t.setNGramMaxSize(maxGrams);
    t.setNGramMinSize(minGrams);    
    filter.setTokenizer(t);     
    WordsFromFile stopwords = new WordsFromFile();
    stopwords.setStopwords(new File("data/stopwords/stopwords.txt"));
    filter.setStopwordsHandler(stopwords);
    if (useStemmer){
        Stemmer s = new /*Iterated*/LovinsStemmer();
        filter.setStemmer(s);
    }
    filter.setInputFormat(trainingData);
    
    • Apply the filter to trainingData: trainingData = Filter.useFilter(trainingData, filter);

    • Create the LibLinear Classifier

      1. SVMType 0 below corresponds to the L2-regularized logistic regression
      2. Set setProbabilityEstimates(true) to print the output probabilities

        Classifier cls = null; LibLINEAR liblinear = new LibLINEAR(); liblinear.setSVMType(new SelectedTag(0, LibLINEAR.TAGS_SVMTYPE)); liblinear.setProbabilityEstimates(true); // liblinear.setBias(1); // default value cls = liblinear; cls.buildClassifier(trainingData);

    • Save model

      System.out.println("Saving the model..."); ObjectOutputStream oos; oos = new ObjectOutputStream(new FileOutputStream(path+"mymodel.model")); oos.writeObject(cls); oos.flush(); oos.close();

    • Create testing instances from .arff file

      Instances trainingData = getDataFromFile(pathToArffFile);

    • Load classifier

    Classifier myCls = (Classifier) weka.core.SerializationHelper.read(path+"mymodel.model");

    • Use the same StringToWordVector filter as above or create a new one for testingData, but remember to use the trainingData for this command:filter.setInputFormat(trainingData); This will make training and testing instances compatible. Alternatively you could use InputMappedClassifier

    • Apply the filter to testingData: testingData = Filter.useFilter(testingData, filter);

    • Classify!

    1.Get the class value for every instance in the testing set

    for (int j = 0; j < testingData.numInstances(); j++) { double res = myCls.classifyInstance(testingData.get(j)); } res is a double value that corresponds to the nominal class that is defined in .arff file. To get the nominal class use : testintData.classAttribute().value((int)res)


2.Get the probability distribution for every instance

 for (int j = 0; j < testingData.numInstances(); j++) {
    double[] dist = first.distributionForInstance(testInstances.get(j));
 }

dist is a double array that contains the probabilities for every class defined in .arff file

Note. Classifier should support probability distributions and enable them with: myClassifier.setProbabilityEstimates(true);