I have reviewed the previous question on stack overflow that relate to my ggplot question, but I was unable to find something that clearly helps.
Question: How can I modify the code below to generate separate frequency plots (histograms) for each column (variable) in the data frame using a loop. i.e. ID x each variable?
Data:
example.xlsx
ID a1.sum b3.sum c6.sum d9.sum
April Showers 10 5 15 0
Anita Job 2 3 1 14
Candy Cain 4 7 14 17
Crystal Ball 6 8 16 12
Dot Matricks 15 9 1
Kay Largo 4 10 5 13
Code:
#set work DIR
setwd("C:/A")
library(rJava)
options(java.parameters = "-Xmx2048m") ## memory set to 2 GB
library(xlsx)
#read in .xlsx file and apply encoding UTF-8 (French accents)
DAT <- read.xlsx("example.xlsx", 1, encoding="UTF-8")
#plot data
library(ggplot2)
p <- ggplot(subset(DAT, a1.sum>1), aes(ID, a1.sum, y=a1.sum))
p <- p + geom_bar(stat="identity", fill="blue", color="green")
p <- p + theme(plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
panel.grid.major = element_line(colour = "white",size=0.25),
panel.grid.minor = element_blank())
p <- p + theme(axis.text.x=element_text(size=10,angle=90, hjust=1, face="plain", family="serif"))
p <- p + theme(axis.text.y=element_text(size=10, hjust=1, face="plain", family="serif"))
p <- p + theme(axis.line.x = element_line(color="black", size = 0.50),
axis.line.y = element_line(color="black", size = 0.5))
p
ggsave(filename="a1.png", plot=p)
Output:
Plot of a1.sum
Example of plot output
Trying to create a loop to generate the same plot for variables b3, c6, and d9.
I have tried several different approaches using aes_string. The following is how I am trying to setup the loop:
#get variable names that end in .sum
n <- names(DAT[grep("*.sum",names(DAT))])
#loop through variable names
for (i in 1:length(n)){
in_dat <- c(n[i])
...ggplot...
print(p[i]);
}
Original Answer - Using Facet Wrap
This sounds like an opportunity to use facet_wrap
in ggplot2
. You can first gather
your data using tidyr
in order to go from a wide format to a narrow format. Also, I used read.table
based on your data and one row was missing a value so I filled that with 0.
DAT <- read.table(text = "ID a1.sum b3.sum c6.sum d9.sum
April_Showers 10 5 15 0
Anita_Job 2 3 1 14
Candy_Cain 4 7 14 17
Crystal_Ball 6 8 16 12
Dot_Matricks 15 9 0 1
Kay_Largo 4 10 5 13",
header = TRUE, stringsAsFactors = FALSE)
library(tidyr)
#gather data with
df2 <- gather(DAT, key, value, -ID)
This gives us:
> df2
ID key value
1 April_Showers a1.sum 10
2 Anita_Job a1.sum 2
3 Candy_Cain a1.sum 4
4 Crystal_Ball a1.sum 6
5 Dot_Matricks a1.sum 15
6 Kay_Largo a1.sum 4
7 April_Showers b3.sum 5
8 Anita_Job b3.sum 3
9 Candy_Cain b3.sum 7
10 Crystal_Ball b3.sum 8
11 Dot_Matricks b3.sum 9
12 Kay_Largo b3.sum 10
13 April_Showers c6.sum 15
14 Anita_Job c6.sum 1
15 Candy_Cain c6.sum 14
16 Crystal_Ball c6.sum 16
17 Dot_Matricks c6.sum 0
18 Kay_Largo c6.sum 5
19 April_Showers d9.sum 0
20 Anita_Job d9.sum 14
21 Candy_Cain d9.sum 17
22 Crystal_Ball d9.sum 12
23 Dot_Matricks d9.sum 1
24 Kay_Largo d9.sum 13
Then we make the same plot as before but it will be split by the key
column. I have noted where I made changed below.
library(ggplot2)
p <- ggplot(df2, aes(x = ID, y=value)) ###Change made here
p <- p + geom_bar(stat="identity", fill="blue", color="green")
p <- p + theme(plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
panel.grid.major = element_line(colour = "white",size=0.25),
panel.grid.minor = element_blank())
p <- p + theme(axis.text.x=element_text(size=10,angle=90, hjust=1, face="plain", family="serif"))
p <- p + theme(axis.text.y=element_text(size=10, hjust=1, face="plain", family="serif"))
p <- p + theme(axis.line.x = element_line(color="black", size = 0.50),
axis.line.y = element_line(color="black", size = 0.5)) +
facet_wrap(~key) #facet added here
Updated Answer - Creating Separate ggplot Objects
In order to create a list of ggplot
items, I borrowed heavily from this question. You create a function which you can then pass to lapply
to make the plots.
First, make the function:
make_plots = function(data, column){
ggplot(data, aes_string(x = "ID", y=column)) +
geom_bar(stat="identity", fill="blue", color="green") +
theme(plot.background = element_rect(fill = "white"),
panel.background = element_rect(fill = "white"),
panel.grid.major = element_line(colour = "white",size=0.25),
panel.grid.minor = element_blank(),
axis.text.x=element_text(size=10,angle=90, hjust=1,
face="plain", family="serif"),
axis.text.y=element_text(size=10, hjust=1, face="plain", family="serif"),
axis.line.x = element_line(color="black", size = 0.50),
axis.line.y = element_line(color="black", size = 0.5))
}
The function takes data
and column
arguments. In this analysis, only the second through last columns will be used to make individual plots. So we call lapply
as follows:
myplots <- lapply(colnames(DAT[2:ncol(DAT)]), make_plots, data = DAT)
myplots
is now a list
of ggplot
objects which you can access with myplots[1]
, myplots[2]
,...or again with lapply
.