如何使用的k折交叉验证中scikit与朴素贝叶斯分类器和NLTK(How to use the a

2019-09-02 00:12发布

我有一个小语料库和我要计算使用10倍交叉验证朴素贝叶斯分类器的准确度,如何能做到这一点。

Answer 1:

你的选择是要么设置它自己或使用类似NLTK培训师 ,因为NLTK 不直接支持的机器学习算法交叉验证 。

我建议可能只是使用其他模块来为你做这一点,但如果你真的想编写自己的代码,你可以不喜欢以下。

假如你希望10倍 ,你就必须重新分区您的培训设置为10个子集,列车9/10 ,测试在剩余的1/10 ,并为子集的每个组合(做10 )。

假设你的训练集合在列表中指定的training ,一个简单的方法来完成,这将是,

num_folds = 10
subset_size = len(training)/num_folds
for i in range(num_folds):
    testing_this_round = training[i*subset_size:][:subset_size]
    training_this_round = training[:i*subset_size] + training[(i+1)*subset_size:]
    # train using training_this_round
    # evaluate against testing_this_round
    # save accuracy

# find mean accuracy over all rounds


Answer 2:

其实没有必要在最upvoted答案提供的长期循环迭代。 也分类器的选择无关紧要(它可以是任何分类器)。

Scikit提供cross_val_score ,这确实引擎盖下的所有循环。

from sklearn.cross_validation import KFold, cross_val_score
k_fold = KFold(len(y), n_folds=10, shuffle=True, random_state=0)
clf = <any classifier>
print cross_val_score(clf, X, y, cv=k_fold, n_jobs=1)


Answer 3:

我已经用了naivebayes sklearn这两个库,并为NLTK交叉证实如下:

import nltk
from sklearn import cross_validation
training_set = nltk.classify.apply_features(extract_features, documents)
cv = cross_validation.KFold(len(training_set), n_folds=10, indices=True, shuffle=False, random_state=None, k=None)

for traincv, testcv in cv:
    classifier = nltk.NaiveBayesClassifier.train(training_set[traincv[0]:traincv[len(traincv)-1]])
    print 'accuracy:', nltk.classify.util.accuracy(classifier, training_set[testcv[0]:testcv[len(testcv)-1]])

和在结束我计算出的平均准确



Answer 4:

修改了第二个答案:

cv = cross_validation.KFold(len(training_set), n_folds=10, shuffle=True, random_state=None)


Answer 5:

从启发Jared的答案 ,这里是用发电机的版本:

def k_fold_generator(X, y, k_fold):
    subset_size = len(X) / k_fold  # Cast to int if using Python 3
    for k in range(k_fold):
        X_train = X[:k * subset_size] + X[(k + 1) * subset_size:]
        X_valid = X[k * subset_size:][:subset_size]
        y_train = y[:k * subset_size] + y[(k + 1) * subset_size:]
        y_valid = y[k * subset_size:][:subset_size]

        yield X_train, y_train, X_valid, y_valid

我假设你的数据集X具有N个数据点(=在实施例4)和d功能(=在实施例2)。 在相关的氮标签存储在y

X = [[ 1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 0, 1, 1]
k_fold = 2

for X_train, y_train, X_valid, y_valid in k_fold_generator(X, y, k_fold):
    # Train using X_train and y_train
    # Evaluate using X_valid and y_valid


文章来源: How to use the a k-fold cross validation in scikit with naive bayes classifier and NLTK