I have build the Spark-csv and able to use the same from pyspark shell using the following command
bin/spark-shell --packages com.databricks:spark-csv_2.10:1.0.3
error getting
>>> df_cat.save("k.csv","com.databricks.spark.csv")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/abhishekchoudhary/bigdata/cdh5.2.0/spark-1.3.1/python/pyspark/sql/dataframe.py", line 209, in save
self._jdf.save(source, jmode, joptions)
File "/Users/abhishekchoudhary/bigdata/cdh5.2.0/spark-1.3.1/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/Users/abhishekchoudhary/bigdata/cdh5.2.0/spark-1.3.1/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError
Where should I place the jar file in my spark pre-built setup so that I will be able to access spark-csv
from python editor directly as well.
At the time I used spark-csv, I also had to download commons-csv
jar (not sure it is still relevant). Both jars where in the spark distribution folder.
I downloaded the jars as follow:
wget http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-csv/1.1/commons-csv-1.1.jar -O commons-csv-1.1.jar<br/>
wget http://search.maven.org/remotecontent?filepath=com/databricks/spark-csv_2.10/1.0.0/spark-csv_2.10-1.0.0.jar -O spark-csv_2.10-1.0.0.jar
then started the python spark shell with the arguments:
./bin/pyspark --jars "spark-csv_2.10-1.0.0.jar,commons-csv-1.1.jar"
and read a spark dataframe from a csv file:
from pyspark.sql import SQLContext<br/>
sqlContext = SQLContext(sc)<br/>
df = sqlContext.load(source="com.databricks.spark.csv", path = "/path/to/you/file.csv")<br/>
df.show()
Another option is to add the following to your spark-defaults.conf:
spark.jars.packages com.databricks:spark-csv_2.11:1.2.0
Instead of placing the jars in any specific folder a simple fix would be to start the pyspark shell with the following arguments:
bin/pyspark --packages com.databricks:spark-csv_2.10:1.0.3
This will automatically load the required spark-csv jars.
Then do the following to read the csv file:
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
df = sqlContext.read.format('com.databricks.spark.csv').options(header='true').load('file.csv')
df.show()
Assuming the session/context hasn't been created yet:
import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages com.databricks:spark-csv_2.10:1.3.0 pyspark-shell'
Below command helped me -: With Scala 2.10 version
/opt/mapr/spark/spark-1.5.2/bin/spark-shell --master local[*] --packages com.databricks:spark-csv_2.10:1.4.0
Has below dependencies -:
com.databricks#spark-csv_2.10;1.4.0!spark-csv_2.10.jar (2043ms)
org.apache.commons#commons-csv;1.1!commons-csv.jar (419ms)
com.univocity#univocity-parsers;1.5.1!univocity-parsers.jar (1481ms)
first find out the path of the spark. for example for pyspark
which pyspark
it will return you the path for example like this-
/home/ubuntu/bin/pyspark
then run this command by change the path as per your spark path
general-: path --packages com.databricks:spark-csv_2.10:1.0.3
/home/ubuntu/bin/pyspark --packages com.databricks:spark-csv_2.10:1.0.3