我想一段代码。 首先,我使用的定时装饰:
#!/usr/bin/env python
import time
from itertools import izip
from random import shuffle
def timing_val(func):
def wrapper(*arg, **kw):
'''source: http://www.daniweb.com/code/snippet368.html'''
t1 = time.time()
res = func(*arg, **kw)
t2 = time.time()
return (t2 - t1), res, func.__name__
return wrapper
@timing_val
def time_izip(alist, n):
i = iter(alist)
return [x for x in izip(*[i] * n)]
@timing_val
def time_indexing(alist, n):
return [alist[i:i + n] for i in range(0, len(alist), n)]
func_list = [locals()[key] for key in locals().keys()
if callable(locals()[key]) and key.startswith('time')]
shuffle(func_list) # Shuffle, just in case the order matters
alist = range(1000000)
times = []
for f in func_list:
times.append(f(alist, 31))
times.sort(key=lambda x: x[0])
for (time, result, func_name) in times:
print '%s took %0.3fms.' % (func_name, time * 1000.)
产量
% test.py
time_indexing took 73.230ms.
time_izip took 122.057ms.
在这里,我使用timeit:
% python - m timeit - s '' 'alist=range(1000000);[alist[i:i+31] for i in range(0, len(alist), 31)]'
10 loops, best of 3:
64 msec per loop
% python - m timeit - s 'from itertools import izip' 'alist=range(1000000);i=iter(alist);[x for x in izip(*[i]*31)]'
10 loops, best of 3:
66.5 msec per loop
使用timeit的结果几乎是相同的,但使用它出现的时机装饰time_indexing
快于time_izip
。
是什么导致了这种差异?
要么方法相信?
如果是这样,哪个?
Answer 1:
使用timeit。 运行测试不止一次给了我很多更好的结果。
func_list=[locals()[key] for key in locals().keys()
if callable(locals()[key]) and key.startswith('time')]
alist=range(1000000)
times=[]
for f in func_list:
n = 10
times.append( min( t for t,_,_ in (f(alist,31) for i in range(n))))
for (time,func_name) in zip(times, func_list):
print '%s took %0.3fms.' % (func_name, time*1000.)
- >
<function wrapper at 0x01FCB5F0> took 39.000ms.
<function wrapper at 0x01FCB670> took 41.000ms.
Answer 2:
从使用的包装functools
改善马特·阿尔科克的答案。
from functools import wraps
from time import time
def timing(f):
@wraps(f)
def wrap(*args, **kw):
ts = time()
result = f(*args, **kw)
te = time()
print 'func:%r args:[%r, %r] took: %2.4f sec' % \
(f.__name__, args, kw, te-ts)
return result
return wrap
在一个例子:
@timing
def f(a):
for _ in range(a):
i = 0
return -1
调用方法f
包裹@timing
:
func:'f' args:[(100000000,), {}] took: 14.2240 sec
f(100000000)
这样做的好处是,它保留了原有功能的属性; 也就是说,像函数名和文档字符串元数据保存正确的返回功能。
Answer 3:
我会用一个计时装饰,因为您可以使用标注洒在你的代码的时间,而不是让你的代码杂乱与时序逻辑。
import time
def timeit(f):
def timed(*args, **kw):
ts = time.time()
result = f(*args, **kw)
te = time.time()
print 'func:%r args:[%r, %r] took: %2.4f sec' % \
(f.__name__, args, kw, te-ts)
return result
return timed
使用装饰很容易要么使用注释。
@timeit
def compute_magic(n):
#function definition
#....
或重新别名要时间的函数。
compute_magic = timeit(compute_magic)
Answer 4:
我厌倦了from __main__ import foo
,现在使用此方法-简单ARGS,为此,%R的作品,而不是在IPython中。
(为什么timeit
只适用于字符串,而不是的thunk /关闭即timefunc(F,任意参数)?)
import timeit
def timef( funcname, *args, **kwargs ):
""" timeit a func with args, e.g.
for window in ( 3, 31, 63, 127, 255 ):
timef( "filter", window, 0 )
This doesn't work in ipython;
see Martelli, "ipython plays weird tricks with __main__" in Stackoverflow
"""
argstr = ", ".join([ "%r" % a for a in args]) if args else ""
kwargstr = ", ".join([ "%s=%r" % (k,v) for k,v in kwargs.items()]) \
if kwargs else ""
comma = ", " if (argstr and kwargstr) else ""
fargs = "%s(%s%s%s)" % (funcname, argstr, comma, kwargstr)
# print "test timef:", fargs
t = timeit.Timer( fargs, "from __main__ import %s" % funcname )
ntime = 3
print "%.0f usec %s" % (t.timeit( ntime ) * 1e6 / ntime, fargs)
#...............................................................................
if __name__ == "__main__":
def f( *args, **kwargs ):
pass
try:
from __main__ import f
except:
print "ipython plays weird tricks with __main__, timef won't work"
timef( "f")
timef( "f", 1 )
timef( "f", """ a b """ )
timef( "f", 1, 2 )
timef( "f", x=3 )
timef( "f", x=3 )
timef( "f", 1, 2, x=3, y=4 )
补充:又见“IPython中饰演怪异的招数用主 ”,马尔泰利在运行,文档测试,通IPython中
Answer 5:
只是一种猜测,但可以区别是差的大小的范围()值的顺序?
从原始来源:
alist=range(1000000)
从您的timeit
例如:
alist=range(100000)
对于它的价值,这里有我的设置为1亿美元之间的系统上的结果:
$ python -V
Python 2.6.4rc2
$ python -m timeit -s 'from itertools import izip' 'alist=range(1000000);i=iter(alist);[x for x in izip(*[i]*31)]'
10 loops, best of 3: 69.6 msec per loop
$ python -m timeit -s '' 'alist=range(1000000);[alist[i:i+31] for i in range(0, len(alist), 31)]'
10 loops, best of 3: 67.6 msec per loop
我是不是能够让你的其他代码运行,因为我无法导入“装饰”模块在我的系统。
更新 -我看你做同样的差异时,我没有参与装饰运行代码。
$ ./test.py
time_indexing took 84.846ms.
time_izip took 132.574ms.
感谢张贴这个问题; 我今天学到了一些东西。 =)
Answer 6:
不管这种特殊的运动,我会想象使用timeit
更安全可靠的选择。 它也是跨平台的,不像你的解决方案。
文章来源: timeit versus timing decorator