我试图通过SICP学习方案。 练习1.3全文如下:定义有三个数字作为参数和返回两个较大的数字的平方和的过程。 我如何能提高我的解决方案请评论。
(define (big x y)
(if (> x y) x y))
(define (p a b c)
(cond ((> a b) (+ (square a) (square (big b c))))
(else (+ (square b) (square (big a c))))))
我试图通过SICP学习方案。 练习1.3全文如下:定义有三个数字作为参数和返回两个较大的数字的平方和的过程。 我如何能提高我的解决方案请评论。
(define (big x y)
(if (> x y) x y))
(define (p a b c)
(cond ((> a b) (+ (square a) (square (big b c))))
(else (+ (square b) (square (big a c))))))
看起来没我,有没有具体的你要提高什么?
你可以这样做:
(define (max2 . l)
(lambda ()
(let ((a (apply max l)))
(values a (apply max (remv a l))))))
(define (q a b c)
(call-with-values (max2 a b c)
(lambda (a b)
(+ (* a a) (* b b)))))
(define (skip-min . l)
(lambda ()
(apply values (remv (apply min l) l))))
(define (p a b c)
(call-with-values (skip-min a b c)
(lambda (a b)
(+ (* a a) (* b b)))))
这(PROC P)可以很容易地转换为处理任何数量的参数。
只使用在书的那点提出的概念,我会做:
(define (square x) (* x x))
(define (sum-of-squares x y) (+ (square x) (square y)))
(define (min x y) (if (< x y) x y))
(define (max x y) (if (> x y) x y))
(define (sum-squares-2-biggest x y z)
(sum-of-squares (max x y) (max z (min x y))))
big
被称为max
。 当它的存在使用标准库的功能。
我的做法是不同的。 而不是大量的测试,我只需添加所有三个平方,然后减去最小的一个的平方。
(define (exercise1.3 a b c)
(let ((smallest (min a b c))
(square (lambda (x) (* x x))))
(+ (square a) (square b) (square c) (- (square smallest)))))
无论您喜欢这种方式,或者一束if
测试,是你的,当然。
另一种实现使用SRFI 95 :
(define (exercise1.3 . args)
(let ((sorted (sort! args >))
(square (lambda (x) (* x x))))
(+ (square (car sorted)) (square (cadr sorted)))))
如上述,但作为一衬垫(感谢synx @ freenode的#scheme); 还需要SRFI 1和SRFI 26 :
(define (exercise1.3 . args)
(apply + (map! (cut expt <> 2) (take! (sort! args >) 2))))
我用下面的代码,它使用内置的做到了min
, max
和square
程序。 他们是很简单的只使用什么文本到这一点,被引入来实现。
(define (sum-of-highest-squares x y z)
(+ (square (max x y))
(square (max (min x y) z))))
怎么样这样的事情?
(define (p a b c)
(if (> a b)
(if (> b c)
(+ (square a) (square b))
(+ (square a) (square c)))
(if (> a c)
(+ (square a) (square b))
(+ (square b) (square c)))))
使用只介绍到的文字, 我认为这是比较重要的点的概念,这里是一个不同的解决方案:
(define (smallest-of-three a b c)
(if (< a b)
(if (< a c) a c)
(if (< b c) b c)))
(define (square a)
(* a a))
(define (sum-of-squares-largest a b c)
(+ (square a)
(square b)
(square c)
(- (square (smallest-of-three a b c)))))
(define (sum-sqr x y)
(+ (square x) (square y)))
(define (sum-squares-2-of-3 x y z)
(cond ((and (<= x y) (<= x z)) (sum-sqr y z))
((and (<= y x) (<= y z)) (sum-sqr x z))
((and (<= z x) (<= z y)) (sum-sqr x y))))
(define (f a b c)
(if (= a (min a b c))
(+ (* b b) (* c c))
(f b c a)))
随着斯科特·霍夫曼和一些IRC帮助我纠正我的错误代码,这里是
(define (p a b c)
(cond ((> a b)
(cond ((> b c)
(+ (square a) (square b)))
(else (+ (square a) (square c)))))
(else
(cond ((> a c)
(+ (square b) (square a))))
(+ (square b) (square c)))))
您也可以对列表进行排序并添加排序列表的第一个和第二个元素的平方:
(require (lib "list.ss")) ;; I use PLT Scheme
(define (exercise-1-3 a b c)
(let* [(sorted-list (sort (list a b c) >))
(x (first sorted-list))
(y (second sorted-list))]
(+ (* x x) (* y y))))
这里是另一种方式来做到这一点:
#!/usr/bin/env mzscheme #lang scheme/load (module ex-1.3 scheme/base (define (ex-1.3 a b c) (let* ((square (lambda (x) (* x x))) (p (lambda (a b c) (+ (square a) (square (if (> b c) b c)))))) (if (> a b) (p a b c) (p b a c)))) (require scheme/contract) (provide/contract [ex-1.3 (-> number? number? number? number?)])) ;; tests (module ex-1.3/test scheme/base (require (planet "test.ss" ("schematics" "schemeunit.plt" 2)) (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2))) (require 'ex-1.3) (test/text-ui (test-suite "ex-1.3" (test-equal? "1 2 3" (ex-1.3 1 2 3) 13) (test-equal? "2 1 3" (ex-1.3 2 1 3) 13) (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25) (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25) (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0))) (test-equal? "all equal" (ex-1.3 3 3 3) 18)))) (require 'ex-1.3/test)
例:
$ mzscheme ex-1.3.ss 6 success(es) 0 failure(s) 0 error(s) 6 test(s) run 0
很高兴看到人们如何等解决了这个问题。 这是我的解决方案:
(define (isGreater? x y z)
(if (and (> x z) (> y z))
(+ (square x) (square y))
0))
(define (sumLarger x y z)
(if (= (isGreater? x y z) 0)
(sumLarger y z x)
(isGreater? x y z)))
我解决了它的迭代,但我喜欢阿席达卡的和(+(方(最大XY))(平方公尺(MAX(最小XY)Z)))解决方案更好,因为在我的版本,如果Z是最小的数字,isGreater? 被调用两次,产生不必要的缓慢和迂回过程。
(define (sum a b) (+ a b))
(define (square a) (* a a))
(define (greater a b )
( if (< a b) b a))
(define (smaller a b )
( if (< a b) a b))
(define (sumOfSquare a b)
(sum (square a) (square b)))
(define (sumOfSquareOfGreaterNumbers a b c)
(sumOfSquare (greater a b) (greater (smaller a b) c)))
我了个去:
(define (procedure a b c)
(let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
(+ (square (first y)) (square(second y)))))
;exercise 1.3
(define (sum-square-of-max a b c)
(+ (if (> a b) (* a a) (* b b))
(if (> b c) (* b b) (* c c))))
我想,这是最小的,最有效的方法:
(define (square-sum-larger a b c)
(+
(square (max a b))
(square (max (min a b) c))))
下面是我想出了解决方案。 我发现当代码被分解成小的功能更容易推理的解决方案。
; Exercise 1.3
(define (sum-square-largest a b c)
(+ (square (greatest a b))
(square (greatest (least a b) c))))
(define (greatest a b)
(cond (( > a b) a)
(( < a b) b)))
(define (least a b)
(cond ((> a b) b)
((< a b) a)))
(define (square a)
(* a a))