I am trying to use cross_val_score on my dataset, but I keep getting zeros as the score:
This is my code:
df = pd.read_csv("Flaveria.csv")
df = pd.get_dummies(df, columns=["N level", "species"], drop_first=True)
# Extracting the target value from the dataset
X = df.iloc[:, df.columns != "Plant Weight(g)"]
y = np.array(df.iloc[:, 0], dtype="S6")
logreg = LogisticRegression()
loo = LeaveOneOut()
scores = cross_val_score(logreg, X, y, cv=loo)
print(scores)
The features are categorical values, while the target value is a float value. I am not exactly sure why I am ONLY getting zeros.
The data looks like this before creating dummy variables
N level,species,Plant Weight(g)
L,brownii,0.3008
L,brownii,0.3288
M,brownii,0.3304
M,brownii,0.388
M,brownii,0.406
H,brownii,0.3955
H,brownii,0.3797
H,brownii,0.2962
Updated code where I am still getting zeros:
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
import numpy as np
import pandas as pd
# Creating dummies for the non numerical features in the dataset
df = pd.read_csv("Flaveria.csv")
df = pd.get_dummies(df, columns=["N level", "species"], drop_first=True)
# Extracting the target value from the dataset
X = df.iloc[:, df.columns != "Plant Weight(g)"]
y = df.iloc[:, 0]
forest = RandomForestRegressor()
loo = LeaveOneOut()
scores = cross_val_score(forest, X, y, cv=loo)
print(scores)