I am reading in a constantly updated data.txt
file and am calculating a rolling standard deviation on the incoming data stream. I am storing that in std
. I have a window size of 100 on the rolling standard deviation.
I am receiving an error:
ValueError: cannot copy sequence with size 78 to array axis with dimension 1
where the size corresponds to the number of items in the std
array. (So this, of course, increases every time I hit Run).
I was wondering why I am receiving this ValueError, and am looking for any suggestions to fix it! The animation works fine when I am just grading ax1.plot(xar, yar)
. But once I try to graph ax1.plot(xar, std)
, the problem arises.
The data in data.txt
looks as follows:
[0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0, 0.0078125, 0.015625][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0244140625, 0.0322265625, 0.9609375][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0263671875, 0.0341796875, 1.0341796875][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.0244140625, 0.0341796875, 1.0048828125][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.033203125, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.0263671875, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.0107421875][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625][0.025390625, 0.0341796875, 1.009765625]
My current code is as follows:
fig = plt.figure()
ax1 = fig.add_subplot(1,1,1)
def animate(i):
data = pd.read_csv("C:\\Users\\Desktop\\data.txt", sep="\[|\]\[|\]",engine = 'python', header = None)
data = data.iloc[0]
data = data.astype(str).apply(lambda x: x.split(',')[-1]).astype(float)
data.pop(0)
xar = []
yar = []
std = []
for j in range(len(data)):
xar.append(j)
for k in range(len(data)):
yar.append(data.iloc[k])
yar = pd.DataFrame(yar)
std.append(pd.rolling_std(yar, 100))
ax1.clear()
ax1.plot(xar,std)
ani = animation.FuncAnimation(fig, animate, interval=.01)
plt.show()