I am trying to implement the basic Equations for Kalman filter for the following 1 dimensional AR model:
x(t) = a_1x(t-1) + a_2x(t-2) + w(t)
y(t) = Cx(t) + v(t);
The KF state space model :
x(t+1) = Ax(t) + w(t)
y(t) = Cx(t) + v(t)
w(t) = N(0,Q)
v(t) = N(0,R)
where
% A - state transition matrix
% C - observation (output) matrix
% Q - state noise covariance
% R - observation noise covariance
% x0 - initial state mean
% P0 - initial state covariance
%%% Matlab script to simulate data and process usiung Kalman for the state
%%% estimation of AR(2) time series.
% Linear system representation
% x_n+1 = A x_n + Bw_n
% y_n = Cx_n + v_n
% w = N(0,Q); v = N(0,R)
clc
clear all
T = 100; % number of data samples
order = 2;
% True coefficients of AR model
a1 = 0.195;
a2 = -0.95;
A = [ a1 a2;
1 0 ];
C = [ 1 0 ];
B = [1;
0];
x =[ rand(order,1) zeros(order,T-1)];
sigma_2_w =1; % variance of the excitation signal for driving the AR model(process noise)
sigma_2_v = 0.01; % variance of measure noise
Q=eye(order);
P=Q;
%Simulate AR model time series, x;
sqrtW=sqrtm(sigma_2_w);
%simulation of the system
for t = 1:T-1
x(:,t+1) = A*x(:,t) + B*sqrtW*randn(1,1);
end
%noisy observation
y = C*x + sqrt(sigma_2_v)*randn(1,T);
%R=sigma_2_v*diag(diag(x));
%R = diag(R);
R = var(y);
z = zeros(1,length(y));
z = y;
x0=mean(y);
for i=1:T-1
[xpred, Ppred] = predict(x0,P, A, Q);
[nu, S] = innovation(xpred, Ppred, z(i), C, R);
[xnew, P] = innovation_update(xpred, Ppred, nu, S, C);
end
%plot
xhat = xnew';
plot(xhat(:,1),'red');
hold on;
plot(x(:,1));
function [xpred, Ppred] = predict(x0,P, A, Q)
xpred = A*x0;
Ppred = A*P*A' + Q;
end
function [nu, S] = innovation(xpred, Ppred, y, C, R)
nu = y - C*xpred; %% innovation
S = R + C*Ppred*C'; %% innovation covariance
end
function [xnew, Pnew] = innovation_update(xpred, Ppred, nu, S, C)
K = Ppred*C'*inv(S); %% Kalman gain
xnew = xpred + K*nu; %% new state
Pnew = Ppred - Ppred*K*C; %% new covariance
end
Question: I want to see how close the estimated state xnew
is to the actual state x
by a plot. But, the xnew
returned by the function innovation_update
is a 2by2 matrix! How do I simulate a time series with the estimated values?