Using Collect_set after exploding in a groupedBy o

2019-08-27 21:00发布

问题:

I have a data-frame which has schema like this :

root
 |-- docId: string (nullable = true)
 |-- field_a: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- field_b: array (nullable = true)
 |    |-- element: string (containsNull = true)

I want to perform a groupBy on field_a and use collect_set to keep all the distinct values (basically inner values in the list) in the field_b in aggregation, I don't want to add a new column by exploding field_b and then do collect_set in aggregation.

How can I use udaf or pandas udf to achieve this?

E.g. :

+---------------------+----------------+------------+
|docId                |field_b         |field_a     |
+---------------------+----------------+------------+
|k&;+B8ROh\\NmetBg=DiR|[IDN,SGP]       |[F]         |
|k&;.]^nX7HRdjIO`>S1+ |[IND,KWT]       |[M]         |
|k&;h&)8Sd\\JrDVL%VH>N|[IDN,IND]       |[M]         |
|k&<8nTqjrYNE8taji^$u |[IND,BHR]       |[F]         |
|k&=$M5Hmd6Y>&@'co-^1 |[IND,AUS]       |[M]         |
|k&>pIZ)g^!L/ht!T\'/"f|[IDN,KWT]       |[M]         |
|k&@ZX>Ph%rPdZ[,Pqsc. |[IND,MYS]       |[F]         |
|k&A]C>dmDXVN$hiVEUk/ |[IND,PHL]       |[F]         |
|k&BX1eGhumSQ6`7A8<Zd |[IND,SAU]       |[M]         |
|k&J)2Vo(k*[^c"Mg*f%) |[IND,SGP]       |[F]         |
+---------------------+----------------+------------+

Output I am looking for is:

+------------+--------------------------------+
|field_a     |collect_set(field__b)           |
+------------+--------------------------------+
|[F]         |[IDN,IND,SGP,BHR,MYS,PHL]       |
|[M]         |[IND,KWT,IDN,AUS,SAU,KWT]       |
+------------+--------------------------------+

回答1:

I wrote a solution to your problem using a pandas UDF. I did not understand why your field_a column (representing gender?) was a list so I turned it into a simple string but you can make it a list of strings if you want. Here it is:

(1) Create dummy df in pandas and make a spark DataFrame:

import pandas as pd
import random
from pyspark.sql.functions import pandas_udf, PandasUDFType

a_list = ['F', 'M']
b_list = ['IDN', 'IND', 'SGP', 'BHR', 'MYS', 'PHL', 'AUS', 'SAU', 'KWT']
size = 10
dummy_df = pd.DataFrame({'docId': [random.randint(0,100) for _ in range(size)],
                         'field_b': [[random.choice(b_list), random.choice(b_list)] for _ in range(size)],
                         'field_a': [random.choice(a_list) for _ in range(size)]})

df = spark.createDataFrame(dummy_df)

producing:

+-----+-------+----------+
|docId|field_a|   field_b|
+-----+-------+----------+
|   23|      F|[SAU, SGP]|
|   36|      F|[IDN, PHL]|
|   82|      M|[BHR, SAU]|
|   30|      F|[AUS, IDN]|
|   75|      F|[AUS, MYS]|
|   46|      F|[SAU, IDN]|
|   11|      F|[SAU, BHR]|
|   71|      M|[KWT, IDN]|
|   50|      F|[IND, SGP]|
|   78|      F|[IND, SGP]|
+-----+-------+----------+

(2) Then define pandas UDF, group and apply:

@pandas_udf('field_a string, set_field_b array<string>', PandasUDFType.GROUPED_MAP)
def my_pandas_udf(df):
    unique_values = pd.DataFrame(df['field_b'].values.tolist()).stack().unique().tolist()
    return pd.DataFrame({'field_a': df['field_a'].iloc[0], 'set_field_b': [unique_values]})

result = df.groupby('field_a').apply(my_pandas_udf)

yielding the final result:

+-------+--------------------+
|field_a|         set_field_b|
+-------+--------------------+
|      F|[SAU, SGP, IDN, P...|
|      M|[BHR, SAU, KWT, IDN]|
+-------+--------------------+

I don't really like the pandas values/tolist/stack/unique approach, maybe there's a better way to do it but handling lists inside pandas dataframes is generally not straightforward.

Now you have to compare the performance with the explode + groupby + collect_set approach, not sure which one will be faster. Tell us when you find out!