Create comparison-of-means table with multiple var

2019-08-26 23:33发布

问题:

I'm looking for a way to create a comparison-of-means (t-test) table from the output of a tabstat command. Basically, I want to know if the mean of each group is statistically significantly different from the mean for the variable overall.

I have 75 variables across 15 groups for a total of 1125 t-tests, so doing them one at a time is out of the question.

I could always write a loop for the tests, but I was wondering if there was a command similar to tabstat that would make the table for me. Google has been unhelpful thus far, even though it seems like a fairly logical place to go from a tabstat output.

Thanks!

回答1:

There might be packages that better serve you, but here's an example that I just put together. It's assuming you are using the one sample t-test because I can't see another way to do it with a t-test. This block of code returns a matrix with three things: the difference from the grand mean, the t value, and the p value.

Feel free to adapt the code as you see fit. Actually it'd just take a few more steps to make it into an ado file.

sysuse auto,clear
loca varlist mpg weight length price                // put varlist here
loca grpvar foreign                                 // put grouping variable here
loca n_var=wordcount("`varlist'")
qui tab `grpvar'
loca n_grp=`r(r)'

mat T=J(`n_var'*3,`n_grp',.)                        // (# of vars*3, # of groups,.)

**colnames
    loca cnames=""
    su `grpvar', meanonly
    forval i=`r(min)'/`r(max)'  {                   // assuming consecutive sequence
        loca cnames="`cnames'"+" "+"`i'"
    }
    mat colnames T=`cnames'                         // values of grouping variable

**rownames
    loca rnames=""
    forval  i=1/`n_var' {
        loca var=word("`varlist'",`i')
        loca rnames="`rnames'"+" "+"`var':diff `var':t `var':p"
    }
    mat rownames T=`rnames'                         // difference, t value, p value

    loca i=1
    foreach var in `varlist'    {
        loca j=1
        su `grpvar', meanonly
        forval f=`r(min)'/`r(max)'  {
            su `var', meanonly
            loca ydbhat=`r(mean)'           // y double hat
            su `var' if `grpvar'==`f', meanonly
            loca diff=`ydbhat'-`r(mean)'    // difference

            qui ttest `var'=`ydbhat' if `grpvar'==`f'   // one-sample ttest
            mat T[`i',`j']=`diff'
            mat T[`i'+1,`j']=`r(t)'
            mat T[`i'+2,`j']=`r(p)'
            loca ++j
        }
        loca i=`i'+3
    }

mat list T, f(%8.3f)

Now I am not sure if 15 columns would be too wide. If so, change the display format or even just use putexcel to export the matrix into a spreadsheet.

Edited: Fixed the forval i=0/1 in the loops to a more generally applicable form. Also other minor editing.



回答2:

Edited the code a bit - can't post markdown in the comments, so I made it a new answer. This version does a two-sample t-test and also displays the cluster mean for each variable.

local varlist var1 var2 var3                   // put varlist here
local grpvar _clus_1                           // put grouping variable here
local n_var=wordcount("`varlist'")
qui summ `grpvar', meanonly
local n_grp=`r(max)'

mat T=J(`n_var'*4,`n_grp',.)                   // (# of vars*4,# of groups,.)

**colnames
    local cnames=""
    qui summ `grpvar', meanonly
    forval i=`r(min)'/`r(max)'  {              // assuming consecutive sequence
        local cnames="`cnames'"+" "+"`i'"
    }
    //di "`cnames'"
    mat colnames T=`cnames'                    // values of grouping variable

**rownames
    local rnames=""
    forval  i=1/`n_var' {
        local var=word("`varlist'",`i')
        local rnames="`rnames'"+" "+"`var':mean `var':diff `var':t-stat `var':p-value"
    }
    mat rownames T=`rnames'                    // mean, difference, t value, p value

    local i=1
    foreach var in `varlist'    {
        local j=1
        qui summ `grpvar'
        forval f=`r(min)'/`r(max)'   {
            qui summ `var'
            local varmean=`r(mean)'
            local varn = `r(N)'
            local varsd = `r(sd)'
            qui summ `var' if `grpvar'==`f'
            local clusmean = `r(mean)'
            local clusn = `r(N)'
            local clussd = `r(sd)'
            local diff=`clusmean'-`varmean'    // difference

    **two-sample t-test
            qui ttesti `varn' `varmean' `varsd' `clusn' `clusmean' `clussd' 

            mat T[`i',`j']=`clusmean'
            mat T[`i'+1,`j']=`diff'
            mat T[`i'+2,`j']=`r(t)'
            mat T[`i'+3,`j']=`r(p)'
            local ++j
        }
        local i=`i'+4
    }

mat list T, f(%8.3f)


标签: stata