I'm creating a Quaternion from input from a serial device. In Processing I rotate around the x-axis in the code below. My Quaternion object takes the input and uses the set function to set the values, euler angles, and normalize. Is there something wrong with the math?
I commented out rotation for z and y, but basically the object doesn't rotate around very well or is jerky compared to the x-axis, which works perfectly. What am I doing wrong in the code below?
For reference, the shape(model) line below is the loaded 3d object from a .obj file loaded in using loadShape and the shape function displays it in the draw loop.
Quaternion q = new Quaternion(s);
q.set(x, y, z, w);
q = q.Euler(q.eulerAngles);
translate(x, y);
rotateX(q.eulerAngles.x);
//rotateY(q.eulerAngles.y);
//rotateZ(q.eulerAngles.z);
shape(model);
rotateX(-q.eulerAngles.x);
translate(-x, -y);
This is part of the Quaternion class:
public class Quaternion {
PApplet s;
public float w,x,y,z;
public PVector eulerAngles;
public Quaternion(PApplet s, float x, float y, float z, float w){
this.s = s;
this.x = x;
this.y = y;
this.z = z;
this.w = w;
normalize();
}
public Quaternion(Quaternion q){
this.s = q.s;
this.w = q.w;
this.x = q.x;
this.y = q.y;
this.z = q.z;
}
public Quaternion normalize() {
float magnitude = w*w + x*x + y*y + z*z;
if(magnitude != 0.0 && magnitude != 1.0){
magnitude = 1.0f / s.sqrt(magnitude);
w *= magnitude;
x *= magnitude;
y *= magnitude;
z *= magnitude;
}
eulerAngles = setEulerAngles();
return this;
}
public Quaternion set(float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return normalize();
}
// Returns a rotation that rotates z degrees around
// the z axis, x degrees around the x axis, and y
// degrees around the y axis.
public Quaternion Euler(){
float roll = eulerAngles.x;
float pitch = eulerAngles.y;
float yaw = eulerAngles.z;
float cr = (float)Math.cos(roll * 0.5);
float sr = (float)Math.sin(roll * 0.5);
float cp = (float)Math.cos(pitch * 0.5);
float sp = (float)Math.sin(pitch * 0.5);
float cy = (float)Math.cos(yaw * 0.5);
float sy = (float)Math.sin(yaw * 0.5);
w = cy*cr*cp + sy*sr*sp;
x = cy*sr*cp - sy*cr*sp;
y = cy*cr*sp + sy*sr*cp;
z = sy*cr*cp - cy*sr*sp;
return normalize();
}
// set euler angle representation of
// the rotation in 3-dim PVector
private PVector setEulerAngles(){
// roll: x-axis rotation
float sinr = 2.0f * (w*x + y*z);
float cosr = 1.0f - 2.0f * (x*x + y*y);
float roll = (float)Math.atan2(sinr, cosr);
// pitch: y-axis rotation
float sinp = 2.0f * (w*y - z*x);
float pitch = 0.0f;
if(Math.abs(sinp) >= 1){
pitch = (float)Math.copySign(Math.PI/2, sinp);
} else {
pitch = (float)Math.asin(sinp);
}
// yaw: z-axis rotation
float siny = 2.0f * (w*z + x*y);
float cosy = 1.0f - 2.0f * (y*y + z*z);
float yaw = (float)Math.atan2(siny, cosy);
return new PVector(roll, pitch, yaw);
}
}