I am trying to train a neural network to make Inverse Kinematics calculations for a robotic arm with predefined segment lengths. I am not including the segment lengths in neural network inputs but rather through the training data. The training data is a pandas dataframe with the spatial mappings of the arm, with labels being the angles of rotation for the three segments of the arm and the features being the solutions of the x and y coordinates of where the endpoint of the last segment would end up in.
I am using Keras with Theano as the Backend.
model = Sequential([
Dense(3, input_shape=(2,), activation="relu"),
Dense(3, activation="relu"),
Dense(3)
])
model.summary()
model.compile(Adam(lr=0.001), loss='mean_squared_error', metrics=['accuracy'])
model.fit(samples, labels, validation_split=0.2, batch_size=1000, epochs=10,shuffle=True, verbose=1)
score = model.evaluate(samples, labels, batch_size=32, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])
weights = model.get_weights()
predictions = model.predict(samples, verbose=1)
print predictions
model.save("IK_NN_7-4-3_keras.h5")
OUTPUT===============================================================
Train on 6272736 samples, validate on 1568184 samples
Epoch 1/10
- 5s - loss: 10198.7558 - acc: 0.9409 - val_loss: 12149.1703 - val_acc: 0.9858
Epoch 2/10
- 5s - loss: 4272.9105 - acc: 0.9932 - val_loss: 12117.0527 - val_acc: 0.9858
Epoch 3/10
- 5s - loss: 4272.7862 - acc: 0.9932 - val_loss: 12113.3804 - val_acc: 0.9858
Epoch 4/10
- 5s - loss: 4272.7567 - acc: 0.9932 - val_loss: 12050.8211 - val_acc: 0.9858
Epoch 5/10
- 5s - loss: 4272.7271 - acc: 0.9932 - val_loss: 12036.5538 - val_acc: 0.9858
Epoch 6/10
- 5s - loss: 4272.7350 - acc: 0.9932 - val_loss: 12103.8665 - val_acc: 0.9858
Epoch 7/10
- 5s - loss: 4272.7553 - acc: 0.9932 - val_loss: 12175.0442 - val_acc: 0.9858
Epoch 8/10
- 5s - loss: 4272.7282 - acc: 0.9932 - val_loss: 12161.4815 - val_acc: 0.9858
Epoch 9/10
- 5s - loss: 4272.7213 - acc: 0.9932 - val_loss: 12101.4021 - val_acc: 0.9858
Epoch 10/10
- 5s - loss: 4272.7909 - acc: 0.9932 - val_loss: 12152.4966 - val_acc: 0.9858
Test score: 5848.549130022683
Test accuracy: 0.9917127071823204
[[ 59.452095 159.26912 258.94424 ]
[ 59.382706 159.41936 259.25183 ]
[ 59.72419 159.69777 259.48584 ]
...
[ 59.58721 159.33467 258.9603 ]
[ 59.51745 159.69331 259.62595 ]
[ 59.984367 160.5533 260.7689 ]]
Both the test accuracy and validation accuracy are seem good but they don't exactly reflect the reality. The predictions should have looked something like this
[[ 0 0 0]
[ 0 0 1]
[ 0 0 2]
...
[358 358 359]
[358 359 359]
[359 359 359]]
Since I fed back the same features expecting to get the same labels. Instead I'm getting this numbers for some reason:
[[ 59.452095 159.26912 258.94424 ]
[ 59.382706 159.41936 259.25183 ]
[ 59.72419 159.69777 259.48584 ]
...
[ 59.58721 159.33467 258.9603 ]
[ 59.51745 159.69331 259.62595 ]
[ 59.984367 160.5533 260.7689 ]]
Thank you for your time.