I have a single Dataframe with the following structure:
A.Data is a vector with numeric data
A.Quartile is a vector with the calculation of quartiles for each A.data and which quartile belongs to this data. (Q1,Q2,Q3,Q4).
I used a very similar code to create the quantile and the Q which belongs to.
quantile(x <- rnorm(1001))
list2env(setNames(as.list(quantile(x <- rnorm(1001))),paste0("Q",1:5)),.GlobalEnv)
Now, ( and here is my problem) I have a .csv that I imported into R, with more than 400 elements with XYZ.Data vectors
So when I imported the .csv file into my environment, I would like to create a function to create in one time all the XYZ.Quartile vectors and I don't know how.
The point would be to read all elements in my list loaded into environment from a .csv file with a function and have the function to create the B.Quartile,C.Quartile,D.Quartile, vectors... one for each element in the list.
Anyone can help please?
Thank you very much for any comment.
PD: New Code Example
quantile(x <- Orange$circumference)
Orange<- within(Orange, Quartile <- as.integer(cut(Orange$circumference, quantile(Orange$circumference, probs=0:4/4), include.lowest=TRUE)))
Your example data is confusing. It's not clear what the structure of your data is so I'm just pretending your lists are columns of a matrix/data.frame.
# proper example data
set.seed(1)
dat <- replicate(6, rnorm(20))
colnames(dat) <- LETTERS[1:6]
head(dat)
# A B C D E F
#[1,] -0.6264538 0.91897737 -0.1645236 2.40161776 -0.5686687 -0.62036668
#[2,] 0.1836433 0.78213630 -0.2533617 -0.03924000 -0.1351786 0.04211587
#[3,] -0.8356286 0.07456498 0.6969634 0.68973936 1.1780870 -0.91092165
#[4,] 1.5952808 -1.98935170 0.5566632 0.02800216 -1.5235668 0.15802877
#[5,] 0.3295078 0.61982575 -0.6887557 -0.74327321 0.5939462 -0.65458464
#[6,] -0.8204684 -0.05612874 -0.7074952 0.18879230 0.3329504 1.76728727
# for each column i
qdat <- apply(dat, 2, function(i){
q <- quantile(i)
# for each element j in column i
sapply(i, function(j){
paste0("Q",1:5)[sum(j > q)+1]
})
})
head(qdat)
# A B C D E F
#[1,] "Q2" "Q5" "Q3" "Q5" "Q2" "Q2"
#[2,] "Q3" "Q5" "Q3" "Q3" "Q3" "Q4"
#[3,] "Q2" "Q4" "Q5" "Q5" "Q5" "Q1"
#[4,] "Q5" "Q1" "Q4" "Q3" "Q1" "Q4"
#[5,] "Q3" "Q4" "Q2" "Q2" "Q4" "Q2"
#[6,] "Q2" "Q3" "Q2" "Q4" "Q4" "Q5"
EDIT 1
See the following code:
# example data
set.seed(1)
dat <- replicate(3, rnorm(20))
colnames(dat) <- paste0(LETTERS[1:3],".Data")
replacewithQ <- function(x) {
as.integer(cut(x,
quantile(x,
probs=0:4/4),
include.lowest=TRUE)
)
}
qdat <- apply(dat, 2, replacewithQ)
colnames(qdat) <- gsub("Data","Quartile",colnames(dat))
newdat <- cbind(dat, qdat)
head(newdat)
# A.Data B.Data C.Data A.Quartile B.Quartile C.Quartile
#[1,] -0.6264538 0.91897737 -0.1645236 1 4 2
#[2,] 0.1836433 0.78213630 -0.2533617 2 4 2
#[3,] -0.8356286 0.07456498 0.6969634 1 3 4
#[4,] 1.5952808 -1.98935170 0.5566632 4 1 3
#[5,] 0.3295078 0.61982575 -0.6887557 2 3 1
#[6,] -0.8204684 -0.05612874 -0.7074952 1 2 1