For the past few days I have been trying to get weather station data interpolated in a map for my country only. I do this as follows:
- Loading the data, I create a grid using interpolation
- Based on this grid I draw a
contour
andcontourf
image - I then draw shapefiles for Germany, Belgium and France on top of the map in order to cover the irrelevant
contour
/contourf
elements. I used this tutorial for that. - Finally, I use an oceans shapefile (IHO Sea Areas; www.marineregions.org/downloads.php#iho) to plot as well in order to cover the North Sea. Using QGIS, I edited this oceans shapefile and removed everything except for the North Sea - given time constraints :)
You would say that everything goes fine -- but for some reason parts of the country as well as the islands are interpreted as being water. I guess this is because these are distinct parts, all not connected to the main land (due to waters/rivers).
Strangely enough, the edges are drawn, but they are not filled.
I've tried and searched a lot but have no clue about how to fix this. I guess it is somewhere in the LineCollection
because in QGIS the shapefile is correct (i.e. it recognizes no shape when clicking the islands etc., which is correct since it should only recognize a shape when clicking on the sea).
I sincerely hope that you could help me point out where I'm wrong and how I can fix this!
Thanks a lot!
This is the map that I'm getting:
https://i.imgur.com/GHISN7n.png
My code is as follows (and you can probably see that I'm very new to this kind of programming, I started yesterday :)):
import numpy as np
import matplotlib
matplotlib.use('Agg')
from scipy.interpolate import griddata
from mpl_toolkits.basemap import Basemap, maskoceans
import matplotlib.pyplot as plt
from numpy.random import seed
import shapefile as shp
from matplotlib.collections import LineCollection
from matplotlib import cm
# Set figure size
plt.figure(figsize=(15,15), dpi=80)
# Define map bounds
xMin, xMax = 2.5, 8.0
yMin, yMax = 50.6, 53.8
# Create map
m = Basemap(projection='merc',llcrnrlon=xMin,llcrnrlat=yMin,urcrnrlon=xMax,urcrnrlat=yMax,resolution='h')
m.drawmapboundary(fill_color='#d4dadc',linewidth=0.25)
# m.drawcoastlines(linewidth=0.5,color='#333333')
# Load data
y = [54.325666666667,52.36,53.269444444444,55.399166666667,54.116666666667,53.614444444444,53.491666666667,53.824130555556,52.918055555556,54.03694,52.139722,52.926865008825,54.853888888889,52.317222,53.240026656696,52.642696895243,53.391265948394,52.505333893732,52.098821802977,52.896643913235,52.457270486008,53.223000488316,52.701902388132,52.0548617826,53.411581103636,52.434561756559,52.749056395511,53.123676213651,52.067534268959,53.194409573306,52.27314817052,51.441334059998,51.224757511326,51.990941918858,51.447744494043,51.960667359998,51.969031121385,51.564889021961,51.857593837453,51.449772459909,51.658528382201,51.196699902606,50.905256257898,51.497306260089,yMin,yMin,yMax,yMax]
x = [2.93575,3.3416666666667,3.6277777777778,3.8102777777778,4.0122222222222,4.9602777777778,5.9416666666667,2.9452777777778,4.1502777777778,6.04167,4.436389,4.7811453228565,4.6961111111111,4.789722,4.9207907082729,4.9787572406902,5.3458010937365,4.6029300588208,5.1797058644882,5.383478899702,5.5196324030324,5.7515738887123,5.8874461671401,5.8723225499118,6.1990994508938,6.2589770334531,6.5729701105864,6.5848470019087,6.6567253619722,7.1493220605216,6.8908745111116,3.5958241584686,3.8609657214986,4.121849767852,4.342014,4.4469005114756,4.9259216999194,4.9352386335384,5.1453989235756,5.3770039280214,5.7065946674719,5.7625447234516,5.7617834850481,6.1961067840608,xMin,xMax,xMin,xMax]
z = [4.8,5.2,5.8,5.4,5,5.3,5.4,4.6,5.8,6.3,4.8,5.4,5.3,4.6,5.4,4.4,4.1,5.5,4.5,4.2,3.9,3.7,4.2,3.2,4,3.8,2.7,2.3,3.4,2.5,3.7,5.2,2.9,5.1,3.8,4.4,4.2,3.9,3.8,3.2,2.6,2.8,2.4,3.1]
avg = np.average(z)
z.extend([avg,avg,avg,avg])
x,y = m(x,y)
# target grid to interpolate to
xis = np.arange(min(x),max(x),2000)
yis = np.arange(min(y),max(y),2000)
xi,yi = np.meshgrid(xis,yis)
# interpolate
zi = griddata((x,y),z,(xi,yi),method='cubic')
# Decide on proper values for colour bar (todo)
vrange = max(z)-min(z)
mult = 2
vmin = min(z)-(mult*vrange)
vmax = max(z)+(mult*vrange)
# Draw contours
cs = m.contour(xi, yi, zi, 5, linewidths=0.25, colors='k')
cs = m.contourf(xi, yi, zi, 5,vmax=vmax,vmin=vmin,cmap=plt.get_cmap('jet'))
# Plot seas from shapefile
sf = shp.Reader(r'/DIR_TO_SHP/shapefiles/northsea')
shapes = sf.shapes()
print shapes[0].parts
records = sf.records()
ax = plt.subplot(111)
for record, shape in zip(records,shapes):
lons,lats = zip(*shape.points)
data = np.array(m(lons, lats)).T
print len(shape.parts)
if len(shape.parts) == 1:
segs = [data,]
else:
segs = []
for i in range(1,len(shape.parts)):
index = shape.parts[i-1]
index2 = shape.parts[i]
segs.append(data[index:index2])
segs.append(data[index2:])
lines = LineCollection(segs,antialiaseds=(1,),zorder=3)
lines.set_facecolors('#abc0d3')
lines.set_edgecolors('red')
lines.set_linewidth(0.5)
ax.add_collection(lines)
# Plot France from shapefile
sf = shp.Reader(r'/DIR_TO_SHP/shapefiles/FRA_adm0')
shapes = sf.shapes()
records = sf.records()
ax = plt.subplot(111)
for record, shape in zip(records,shapes):
lons,lats = zip(*shape.points)
data = np.array(m(lons, lats)).T
if len(shape.parts) == 1:
segs = [data,]
else:
segs = []
for i in range(1,len(shape.parts)):
index = shape.parts[i-1]
index2 = shape.parts[i]
segs.append(data[index:index2])
segs.append(data[index2:])
lines = LineCollection(segs,antialiaseds=(1,))
lines.set_facecolors('#fafaf8')
lines.set_edgecolors('#333333')
lines.set_linewidth(0.5)
ax.add_collection(lines)
# Plot Belgium from shapefile
sf = shp.Reader(r'/DIR_TO_SHP/shapefiles/BEL_adm0')
shapes = sf.shapes()
records = sf.records()
ax = plt.subplot(111)
for record, shape in zip(records,shapes):
lons,lats = zip(*shape.points)
data = np.array(m(lons, lats)).T
if len(shape.parts) == 1:
segs = [data,]
else:
segs = []
for i in range(1,len(shape.parts)):
index = shape.parts[i-1]
index2 = shape.parts[i]
segs.append(data[index:index2])
segs.append(data[index2:])
lines = LineCollection(segs,antialiaseds=(1,))
lines.set_facecolors('#fafaf8')
lines.set_edgecolors('#333333')
lines.set_linewidth(0.5)
ax.add_collection(lines)
# Plot Germany from shapefile
sf = shp.Reader(r'/DIR_TO_SHP/shapefiles/DEU_adm0')
shapes = sf.shapes()
records = sf.records()
ax = plt.subplot(111)
for record, shape in zip(records,shapes):
lons,lats = zip(*shape.points)
data = np.array(m(lons, lats)).T
if len(shape.parts) == 1:
segs = [data,]
else:
segs = []
for i in range(1,len(shape.parts)):
index = shape.parts[i-1]
index2 = shape.parts[i]
segs.append(data[index:index2])
segs.append(data[index2:])
lines = LineCollection(segs,antialiaseds=(1,))
lines.set_facecolors('#fafaf8')
lines.set_edgecolors('#333333')
lines.set_linewidth(0.5)
ax.add_collection(lines)
# Finish plot
plt.axis('off')
plt.savefig("test2.png",bbox_inches='tight',pad_inches=0);