rich.main3
is a linear model in R. I understand the rest of the elements of the list but I don't get what qraux
is. The documentation states that it is
a vector of length ncol(x) which contains additional information on \bold{Q}".
What additional information does it mean?
str(rich.main3$qr)
qr : num [1:164, 1:147] -12.8062 0.0781 0.0781 0.0781 0.0781 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:164] "1" "2" "3" "4" ...
.. ..$ : chr [1:147] "(Intercept)" "S2" "S3" "x1" ...
..- attr(*, "assign")= int [1:147] 0 1 1 2 3 4 5 6 7 8 ...
..- attr(*, "contrasts")=List of 3
.. ..$ S : chr "contr.treatment"
.. ..$ ID : chr "contr.treatment"
.. ..$ Block: chr "contr.treatment"
$ qraux: num [1:147] 1.08 1.06 1.16 1.21 1.27 ...
$ pivot: int [1:147] 1 2 3 4 5 6 7 8 10 11 ...
$ tol : num 1e-07
$ rank : int 21
- attr(*, "class")= chr "qr"
Presumably you don't know how QR factorization is computed. I wrote the following in LaTeX which might help you clarify this. Surely on a programming site I need to show you some code. In the end I offer you a toy R function computing Householder reflection.
Householder reflection matrix
Householder transformation
Householder QR factorization (without pivoting)
Compact storage of QR and rescaling
The LAPACK auxiliary routine dlarfg
is performing Householder transform. I have also written the following toy R function for demonstration:
dlarfg <- function (x) {
beta <- -1 * sign(x[1]) * sqrt(as.numeric(crossprod(x)))
v <- c(1, x[-1] / (x[1] - beta))
tau <- 1 - x[1] / beta
y <- c(beta, rep(0, length(x)-1L))
packed_yv <- c(beta, v[-1])
oo <- cbind(x, y, v, packed_yv)
attr(oo, "tau") <- tau
oo
}
Suppose we have an input vector
set.seed(0); x <- rnorm(5)
my function gives:
dlarfg(x)
# x y v packed_yv
#[1,] 1.2629543 -2.293655 1.00000000 -2.29365466
#[2,] -0.3262334 0.000000 -0.09172596 -0.09172596
#[3,] 1.3297993 0.000000 0.37389527 0.37389527
#[4,] 1.2724293 0.000000 0.35776475 0.35776475
#[5,] 0.4146414 0.000000 0.11658336 0.11658336
#attr(,"tau")
#[1] 1.55063