Referring to the question answered by @holzben Clustering: how to extract most distinguishing features?
Using the SK-Means package, I managed to get the cluster. I couldn't figure out why the word frequency in all clusters is so small. It didn't make sense to me as I have about 10,000 tweets in my dataset. What am I doing wrong?
My dataset is available at https://docs.google.com/a/siswa.um.edu.my/file/d/0B3-xuXnLwF0yTHAzbE5KbTlQWWM/edit
> class(myCorpus)
[1] "VCorpus" "Corpus" "list"
> dtm<-DocumentTermMatrix(myCorpus,control=list(wordLengths=c(1,Inf)))
> class(dtm)
[1] "DocumentTermMatrix" "simple_triplet_matrix"
> clus <- skmeans(dtm, 3)
> clus
A hard spherical k-means partition of 10829 objects into 3 classes.
Class sizes: 2100, 6219, 2510
Call: skmeans(x = dtm, k = 3)
> mfrq_words_per_cluster <- function(clus, dtm, first = 6, unique = TRUE){
+ if(!any(class(clus) == "skmeans")) return("clus must be an skmeans object")
+
+ dtm <- as.simple_triplet_matrix(dtm)
+ indM <- table(names(clus$cluster), clus$cluster) == 1 # generate bool matrix
+
+ hfun <- function(ind, dtm){ # help function, summing up words
+ if(is.null(dtm[ind, ])) dtm[ind, ] else col_sums(dtm[ind, ])
+ }
+ frqM <- apply(indM, 2, hfun, dtm = dtm)
+
+ if(unique){
+ # eliminate word which occur in several clusters
+ frqM <- frqM[rowSums(frqM > 0) == 1, ]
+ }
+ # export to list, order and take first x elements
+ res <- lapply(1:ncol(frqM), function(i, mat, first)
+ head(sort(mat[, i], decreasing = TRUE), first),
+ mat = frqM, first = first)
+
+ names(res) <- paste0("CLUSTER_", 1:ncol(frqM))
+ return(res)
+ }
> mfrq_words_per_cluster(clus, dtm)
$CLUSTER_1
srilanka warrior airtickets avionics ayf citizens
4 4 3 3 3 3
$CLUSTER_2
higher jumpa ec bodoh komentari batch
12 11 9 8 8 7
$CLUSTER_3
liong ryanair yi airlinescrew aksi berjaya
5 4 4 3 3 3
and below is the script I used to get the above clusters:
require("tm")
require("skmeans")
require("slam")
clus <- skmeans(dtm, 3)
# clus: a skmeans object
# dtm: a Document Term Matrix
# first: eg. 10 most frequent words per cluster
# unique: if FALSE all words of the DTM will be used
# if TRUE only cluster specific words will be used
# result: List with words and frequency of words
# If unique = TRUE, only cluster specific words will be considered.
# Words which occur in more than one cluster will be ignored.
mfrq_words_per_cluster <- function(clus, dtm, first = 6, unique = TRUE){
if(!any(class(clus) == "skmeans")) return("clus must be an skmeans object")
dtm <- as.simple_triplet_matrix(dtm)
indM <- table(names(clus$cluster), clus$cluster) == 1 # generate bool matrix
hfun <- function(ind, dtm){ # help function, summing up words
if(is.null(dtm[ind, ])) dtm[ind, ] else col_sums(dtm[ind, ])
}
frqM <- apply(indM, 2, hfun, dtm = dtm)
if(unique){
# eliminate word which occur in several clusters
frqM <- frqM[rowSums(frqM > 0) == 1, ]
}
# export to list, order and take first x elements
res <- lapply(1:ncol(frqM), function(i, mat, first)
head(sort(mat[, i], decreasing = TRUE), first),
mat = frqM, first = first)
names(res) <- paste0("CLUSTER_", 1:ncol(frqM))
return(res)
}
mfrq_words_per_cluster(clus, dtm)