This question already has an answer here:
-
Transpose column to row with Spark
6 answers
-
How to melt Spark DataFrame?
4 answers
-
Unpivot in spark-sql/pyspark
1 answer
-
Error while exploding a struct column in Spark
3 answers
Converting structType to MapType in Spark.
Schema:
event: struct (nullable = true)
| | event_category: string (nullable = true)
| | event_name: string (nullable = true)
| | properties: struct (nullable = true)
| | | prop1: string (nullable = true)
| | | prop2: string (nullable = true)
Sample data:
{ "event": {
"event_category: "abc",
"event_name": "click",
"properties" : {
"prop1": "prop1Value",
"prop2": "prop2Value",
....
}
}
}
Need values as:
event_category | event_name | properties_key | properties_value |
abc | click | prop1 | prop1Value
abc | click | prop2 | prop2Value
You will have to find some mechanism to create map
of properties
struct. I have used udf
function to zip
the key and values and return arrays
of key and value.
import org.apache.spark.sql.functions._
def collectUdf = udf((cols: collection.mutable.WrappedArray[String], values: collection.mutable.WrappedArray[String]) => cols.zip(values))
Multiple generators are not supported in spark so you will have to save the dataframe
to temporary dataframe
.
val columnsMap = df_json.select($"event.properties.*").columns
val temp = df_json.withColumn("event_properties", explode(collectUdf(lit(columnsMap), array($"event.properties.*"))))
The last step would be to just separate the event_properties
column
temp.select($"event.event_category", $"event.event_name", $"event_properties._1".as("properties_key"), $"event_properties._2".as("properties_value")).show(false)
You should have what you desire
+--------------+----------+--------------+----------------+
|event_category|event_name|properties_key|properties_value|
+--------------+----------+--------------+----------------+
|abc |click |prop1 |prop1Value |
|abc |click |prop2 |prop2Value |
+--------------+----------+--------------+----------------+