Confusion matrix ,my argmax which convert predicti

2019-08-20 02:12发布

问题:

I am using Convolutional Neural networks for classification and watched the video in youtube this site [which explained confusion matrix and how to pş1 and I aslo used according the youtube is explained the codes is :

`import seaborn as sns

    # Predict the values from the validation dataset
    Y_pred = model.predict(X_test)


    # Convert predictions classes to one hot vectors 
    Y_pred_classes = np.argmax(Y_pred,axis = 1) 
    # Convert validation observations to one hot vectors
    print(Y_pred_classes)
    Y_true = np.argmax(y_test,axis = 1)
    print(Y_true)
    # compute the confusion matrix
    confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) 
    # plot the confusion matrix
    f,ax = plt.subplots(figsize=(8, 8))
    sns.heatmap(confusion_mtx, annot=True, linewidths=0.01,cmap="Greens",linecolor="gray", fmt= '.1f',ax=ax)
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.title("Confusion Matrix")
    plt.show()`

but my output is not array and it is kind of matrix :

 [5 0 6 ... 0 2 0]
  [5 0 6 ... 0 2 0]
  ...
  [6 0 6 ... 0 3 0]
  [6 0 6 ... 0 2 0]
  [6 0 6 ... 0 2 0]]

 [[4 0 4 ... 0 2 0]
  [6 0 6 ... 0 2 0]
  [6 0 6 ... 0 2 0]
  ...
  [0 0 0 ... 0 3 0]
  [6 0 6 ... 0 2 0]
  [6 0 6 ... 0 2 0]]

 [[2 0 4 ... 0 1 0]
  [6 0 6 ... 0 3 0]
  [6 0 6 ... 0 3 0]
  ...
  [0 0 0 ... 0 3 0]
  [6 0 6 ... 0 3 0]
  [6 0 6 ... 0 2 0]]

 ...

 [[5 0 5 ... 0 3 0]
  [6 0 6 ... 0 3 0]
  [6 0 6 ... 0 3 0]
  ...
  [0 0 6 ... 0 3 0]
  [6 0 6 ... 0 3 0]
  [0 0 6 ... 0 3 0]]


[0 0 0 0 0 0 1]`

So what should i do to turn the predicted matrix get an array, I also tried keras predict_classes but i did not work for me .

Because it should be like `

y_true = [2, 0, 2, 2, 0, 1]

    >>> y_pred = [0, 0, 2, 2, 0, 2]
    >>> confusion_matrix(y_true, y_pred)
    array([[2, 0, 0],
           [0, 0, 1],
           [1, 0, 2]])`

but it is not. Thank you

My whole model is more here:

import numpy as np
import os
import time

from keras.preprocessing import image
from keras.layers import GlobalMaxPooling2D, Dense, Dropout,Activation,Flatten
from imagenet_utils import preprocess_input
from keras.applications.resnet50 import preprocess_input, decode_predictions
from keras.layers import Input
from keras.models import Model
from keras.utils import np_utils
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
#from sklearn.cross_validation import train_test_split



# Loading the training data
PATH = '/content/drive/My Drive/female'
# Define data path
data_path = PATH + '/eeg2'
data_dir_list = os.listdir(data_path)

img_data_list=[]

for dataset in data_dir_list:
    img_list=os.listdir(data_path+'/'+ dataset)
    print ('Loaded the images of dataset-'+'{}\n'.format(dataset))
    for img in img_list:
        img_path = data_path + '/'+ dataset + '/'+ img 
        img = image.load_img(img_path, target_size=(224, 224))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        print('Input image shapeGGGGGG:', x.shape)
        img_data_list.append(x)



img_data = np.array(img_data_list)
#img_data = img_data.astype('float32')
print (img_data.shape)
img_data=np.rollaxis(img_data,1,0)
print (img_data.shape)
img_data=img_data[0]
print (img_data.shape)


# Define the number of classes
num_classes = 2
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')

labels[0:23]=0
labels[23:]=1
#labels[96:132]=2
#labels[132:]=3


 # names = ['birbucuk','birileucarasi','uciledortarasi','besileyediarasi']
# convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)
print(Y)

#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.15, random_state=42)
from keras.applications.resnet50 import ResNet50
from keras.models import Model
import time

from keras.layers import GlobalAveragePooling2D, Dense, Dropout, Flatten, BatchNormalization
from keras.models import Sequential
model =ResNet50 (
                                 include_top = False, 
                                 weights = None)
model = ResNet50(weights='imagenet',include_top=False ,input_tensor=None, input_shape=None, pooling=None, classes=2)
model.summary()
last_layer = model.output
# add a global spatial average pooling layer
x = GlobalAveragePooling2D()(last_layer)
# add fully-connected & dropout layers
x = Dense(512, activation='relu',name='fc-1')(x)
x = Dropout(0.6)(x)
x = Dense(512, activation='relu',name='fc-2')(x)
x = Dropout(0.5)(x)
# a softmax layer for 4 classes
out = Dense(2, activation='softmax',name='output_layer')(x)

# this is the model we will train
custom_resnet_model2 = Model(inputs=model.input, outputs=out)

custom_resnet_model2.summary()
for layer in custom_resnet_model2.layers[:]:
   layer.trainable = True

optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

from keras import losses

from keras.optimizers import SGD

custom_resnet_model2.compile(loss="categorical_crossentropy",optimizer=optimizer,metrics=['accuracy'])

t=time.time()
hist = custom_resnet_model2.fit(X_train, y_train, batch_size=32, epochs=50, verbose=1, validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_resnet_model2.evaluate(X_test, y_test, batch_size=32, verbose=1)

print("[INFO] loss={:.4f}, accuracy: {:.4f}%".format(loss,accuracy * 100))



from sklearn.metrics import confusion_matrix


 import seaborn as sns
# Predict the values from the validation dataset
Y_pred = model.predict(X_test)


# Convert predictions classes to one hot vectors 
Y_pred_classes = np.argmax(Y_pred,axis = 1) 
# Convert validation observations to one hot vectors
print(Y_pred_classes)
Y_true = np.argmax(y_test,axis = 1)
print(Y_true)
# compute the confusion matrix
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) 
# plot the confusion matrix
f,ax = plt.subplots(figsize=(8, 8))
sns.heatmap(confusion_mtx, annot=True, linewidths=0.01,cmap="Greens",linecolor="gray", fmt= '.1f',ax=ax)
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.title("Confusion Matrix")
plt.show()