Multiple Spelling Results in a Dataframe 1

2019-08-19 02:51发布

问题:

I have some data containing spelling errors. I'm correcting them and scoring how close the spelling is using the following code:

 import pandas as pd
 import difflib

 Li_A = ["potato", "tomato", "squash", "apple", "pear"]

 Q    = {'one' : pd.Series(["potat0", "toma3o", "s5uash", "ap8le", "pea7"], index=['a', 'b', 'c', 'd', 'e']),
         'two' : pd.Series(["po1ato", "2omato", "squ0sh", "2pple", "p3ar"], index=['a', 'b', 'c', 'd', 'e'])}

 df_Q = pd.DataFrame(Q)

 # Define the function that Corrects & Scores the Spelling
 def Spelling(ask):
     a = difflib.get_close_matches(ask, Li_A, n=5, cutoff=0.1)

     # List comprehension for all values of a
     b = [difflib.SequenceMatcher(None, ask, x).ratio() for x in a]
     return pd.Series(a + b)

 # Apply the function that Corrects & Scores the Spelling
 df_A = df_Q['one'].apply(Spelling)

 # Get the column names on the A dataframe
 c = len(df_A.columns) // 2
 df_A.columns = ['Spelling_{}'.format(x) for x in range(c)] + \
                ['Score_{}'.format(y)    for y in range(c)]

 # Join the Q & A dataframes
 df_QA = df_Q.join(df_A)

This gives the result:

 df_QA
       one     two Spelling_0 Spelling_1 Spelling_2 Spelling_3 Spelling_4  \
 a  potat0  po1ato     potato     tomato       pear      apple     squash   
 b  toma3o  2omato     tomato     potato       pear      apple     squash   
 c  s5uash  squ0sh     squash       pear      apple     tomato     potato   
 d   ap8le   2pple      apple       pear     tomato     squash     potato   
 e    pea7    p3ar       pear     potato      apple     tomato     squash   

     Score_0   Score_1   Score_2   Score_3   Score_4  
 a  0.833333  0.500000  0.400000  0.181818  0.166667  
 b  0.833333  0.333333  0.200000  0.181818  0.166667  
 c  0.833333  0.200000  0.181818  0.166667  0.166667  
 d  0.800000  0.222222  0.181818  0.181818  0.181818  
 e  0.750000  0.400000  0.444444  0.200000  0.200000  

For row "e", "potato" is in row 1 and "apple" in row 2. However, apple got a higher score than potato. This is the wrong way round for my application.

How do I get the higher scoring results the be consistently to the left please?

Edit 1: I tried a simpler code:

 import difflib
 Li_A = ["potato", "tomato", "squash", "apple", "pear"]
 Q    = "pea7"
 A = difflib.get_close_matches(Q, Li_A, n=5, cutoff=0.1)

& got the same result:

 A: ['pear', 'potato', 'apple', 'tomato', 'squash']

I also tried a simpler scoring code:

 import difflib
 S1 = difflib.SequenceMatcher(None, "pea7", "potato")
 R1 = S1.ratio()
 S2 = difflib.SequenceMatcher(None, "pea7", "apple")
 R2 = S2.ratio()

& again I got the same result:

 R1: 0.4
 R2: 0.444

Edit 2 I tried it with fuzzywuzzy. I got the same result again since fuzzywuzzy depends on difflib:

 from fuzzywuzzy import fuzz
 R1 = fuzz.ratio("pea7", "potato")
 R2 = fuzz.ratio("pea7", "apple")

回答1:

SequenceMatcher is correctly calculating the ratio using the method described by Ratcliff and Metzener, 1988. That is, for the number of characters found in common (CC) and the total number of characters in the two strings (CT):

ratio = 2.CC/CT 

So it looks like the issue is with get_close_matches