Hi I want to do a scatterplot or point plot of different groups.
I can get it work for individual plots but as ggplot2 need coordinates for the x-axes. thats were I already get into trouble.
This is my structure:
# A tibble: 2 x 33
gene_id gene N1 N2 N3 N4 N5 N6 N7 T1 T2 T3 T4
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ENSMUSG000… RNS 198 182 206 183 177 194 193 173 191 167 200
2 ENSMUSG000… RNS2 199 198 216 252 273 159 164 159 162 151 199
# ... with 20 more variables: T5 <dbl>, T6 <dbl>, T7 <dbl>, T8 <dbl>, T9 <dbl>,
# T10 <dbl>, T11 <dbl>, T12 <dbl>, T13 <dbl>, T14 <dbl>, M1 <dbl>, M2 <dbl>,
# M3 <dbl>, M4 <dbl>, M5 <dbl>, M6 <dbl>, M7 <dbl>, M8 <dbl>, M9 <dbl>, M10 <dbl>
I would like to plot first all individuals next to each other as well as group the N, T and Ms together and plot them in different colors. I am pretty sure I can assign the colors once the plotting itself works.
ggplot(a, aes(y=a[,3],x=1))+
geom_point()
I start in this case very low in the porcess.;;;
Thanks for your help!
You need to transform the column names into variables. I use the data that you published but I am not sure if you expect a plot like this
data <- read.csv('tabla.csv')
data
Initial data
gene_id gene N1 N2 N3 N4 N5 N6 N7 T1 T2 T3 T4
1 ENSMUSG000… RNS 198 182 206 183 177 194 193 173 191 167 200
2 ENSMUSG000… RNS2 199 198 216 252 273 159 164 159 162 151 199
Melt the data
library(reshape)
newData <- melt(data, id=c("gene_id", "gene"))
newData
You get a data frame like this
gene_id gene variable value
1 ENSMUSG000… RNS N1 198
2 ENSMUSG000… RNS2 N1 199
3 ENSMUSG000… RNS N2 182
4 ENSMUSG000… RNS2 N2 198
5 ENSMUSG000… RNS N3 206
Create a new colum with the name of each group (N, T or M)
count = 0
for(value in newData$variable){
# To get the group of each value
if(startsWith(value, 'N')){
group <- 'N'
}else if(startsWith(value, 'T')){
group <- 'T'
}else if(startsWith(value, 'M')){
group <- 'M'
}
# Storing the group name into a vector
if(count == 0){
vectorGroup <- group
}else{
vectorGroup <- c(vectorGroup, group)
}
count <- count + 1
}
newData$group <- vectorGroup
Finally making the scatter plot
library(ggplot2)
ggplot(newData, aes(x = gene, y = value, color= group)) + theme_minimal() + geom_point(width = 0.5) + scale_fill_brewer(palette = 'Paired')
You get a plot like this