I am trying to compute a 300,000x300,000 matrix in R, my codes are working quite well but it's been running for days now, how can i make it more efficient and time saving?
My codes are working well but it has been running for days now, attached are a subset of what I'm working with, the ID extends to 300,000; how can i make the codes run faster in minutes as it has been running for days now.
fam <- structure(list(ID = c(1L, 2L, 3L, 4L, 6L, 5L, 7L), dad = c(0L,
0L, 1L, 1L, 1L, 3L, 5L), mum = c(0L, 0L, 0L, 2L, 4L, 4L, 6L),
GEN = c(1L, 1L, 2L, 2L, 3L, 3L, 4L)), class = "data.frame", row.names = c(NA,
-7L))
hom<-function(data) {
library(Matrix)
library(foreach)
n<-max(as.numeric(fam[,"ID"]))
t<-min(as.numeric(fam[,"ID"]))
A<-Matrix(0,nrow=n,ncol=n, sparse=TRUE)
while(t <=n) {
s<-max(fam[t,"dad"],fam[t,"mum"])
d<-min(fam[t,"dad"],fam[t,"mum"])
if (s>0 & d>0 )
{
if (fam[t,"GEN"]==999 & s!=d)
{ warning("both dad and mum should be the same, different for at least one individual")
NULL
}
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)+0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]
foreach(j = 1:(t-1), .verbose=TRUE, .combine='c', .packages=c("Matrix", "foreach")) %do%
{
A[t,j]<- 0.5*(A[j,fam[t,"dad"]]+A[j,fam[t,"mum"]])
A[j,t]<- A[t,j]
}
}
if (s>0 & d==0 )
{
if ( fam[t,"GEN"]==999)
{ warning("both dad and mum should be the same, one parent equal to zero for at least individual")
NULL }
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
foreach(j = 1:(t-1), .verbose=TRUE, .combine='c', .packages=c("Matrix", "foreach")) %do%
{
A[t,j]<-0.5*A[j,s]
A[j,t]<-A[t,j]
}
}
if (s==0 )
{
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
}
cat(" MatbyGEN: ", t ,"\n")
t <- t+1
}
A
}
Output of the above example
%%MatrixMarket matrix coordinate real symmetric
7 7 26
1 1 1
3 1 .5
4 1 .5
5 1 .75
6 1 .5
7 1 .625
2 2 1
4 2 .5
5 2 .25
6 2 .25
7 2 .25
3 3 1.5
4 3 .25
5 3 .375
6 3 .875
7 3 .625
4 4 1.5
5 4 1
6 4 .875
7 4 .9375
5 5 1.8125
6 5 .6875
7 5 1.25
6 6 1.78125
7 6 1.234375
7 7 1.91796875
The issue is getting it to work faster for a matrix of 300k x 300k, this would take days or weeks to run as i have been running it for a while now, what can i do to make it run faster?
N.B: save the example as "anything.txt", then read the file in as "fam <- read.delim(, header = TRUE, sep="")"
The problem you have is that this is recursive. Each loop depends on the previous loop's results. Therefore, you can't really use vectorization to solve the problem.
If you want to use R for this, you're best bet is to look into Rcpp
. I'm not that good with Rcpp
but I do have some suggestions.
The easiest thing to do is to get rid of the foreach
loop and replace it with a regular for
loop. There's a lot of overhead to use parallel threads and when a function is recursive, it's hard for the workers to really do better on their own.
# Before
foreach(j = 1:(t-1), .combine='c', .packages=c("Matrix", "foreach")) %do%
{ ... }
# After
for (j in 1:(t-1)) {
...
}
The next thing to do is to contemplate whether you really need a sparse matrix. If you're not having memory problems, you might as well use a regular matrix.
A<-Matrix(0,nrow=n,ncol=n, sparse=TRUE)
# to
A<-matrix(0,nrow=n,ncol=n)
The last thing to do is to rethink how you initialize everything. Parts of that code gets repeated multiple times like the assignment to the diag
. Since we're summing separate elements, we can initialize the diag
with the part common to all 3 code snippets 2 - 0.5^(fam[t, 'GEN'] - 1)
.
A<-matrix(0,nrow=n,ncol=n)
diag(A) <- 2-0.5^(fam[["GEN"]]-1)
This is important because that allows us to skip ahead. Your original code snippet had like, 1,000 rows with 0s for 'mum' and 'dad'. With this initialization, we can skip right ahead to the first row with a non-zero result for 'mum' or 'dad':
t_start <- min(which.max(fam$dad > 0), which.max(fam$mum > 0))
t_end <- max(fam[['ID']])
for (t in t_start:t_end) {
...
}
I decided in the interest of skipping if
statements, I wanted to use sum(c(..., ...))
to sum up everything. That way, if the subset resulted in a NULL
, I could still sum. Altogether:
t_start <- min(which.max(fam$dad > 0), which.max(fam$mum > 0))
t_end <- max(fam[['ID']])
A<-matrix(0,nrow=t_end,ncol=t_end)
diag(A) <- 2-0.5^(fam[["GEN"]]-1)
for (t in t_start:t_end) {
A[t,t]<- sum(c(A[t,t], 0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]))
for(j in 1:(t-1)) {
A[t,j]<- 0.5 * sum(c(A[j,fam[t,"dad"]],A[j,fam[t,"mum"]]))
A[j,t]<- A[t,j]
}
}
A
Performance
Unit: microseconds
expr min lq mean median uq max neval
original 85759.901 86650.7515 88776.695 88740.050 90529.750 97433.2 100
non_foreach 47912.601 48528.5010 50699.867 50220.901 51782.651 88355.1 100
non_sparse_non_each 1423.701 1454.3015 1531.833 1471.451 1496.401 4126.3 100
final_change 953.102 981.8015 1212.264 1010.500 1026.052 21350.1 100
All code
fam <- structure(list(ID = c(1L, 2L, 3L, 4L, 6L, 5L, 7L), dad = c(0L,
0L, 1L, 1L, 1L, 3L, 5L), mum = c(0L, 0L, 0L, 2L, 4L, 4L, 6L),
GEN = c(1L, 1L, 2L, 2L, 3L, 3L, 4L)), class = "data.frame", row.names = c(NA,
-7L))
A<-matrix(0,nrow=7,ncol=7)
diag(A) <- 2-0.5^(fam[["GEN"]]-1)
t_start <- min(which.max(fam$dad > 0), which.max(fam$mum > 0))
t_end <- max(fam[['ID']])
for (t in t_start:t_end) {
A[t,t]<- sum(c(A[t,t], 0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]))
for(j in 1:(t-1)) {
A[t,j]<- 0.5 * sum(c(A[j,fam[t,"dad"]],A[j,fam[t,"mum"]]))
A[j,t]<- A[t,j]
}
}
A
hom<-function(data) {
library(Matrix)
library(foreach)
n<-max(as.numeric(fam[,"ID"]))
t<-min(as.numeric(fam[,"ID"]))
A<-Matrix(0,nrow=n,ncol=n, sparse=TRUE)
while(t <=n) {
s<-max(fam[t,"dad"],fam[t,"mum"])
d<-min(fam[t,"dad"],fam[t,"mum"])
if (s>0 & d>0 )
{
if (fam[t,"GEN"]==999 & s!=d)
{ warning("both dad and mum should be the same, different for at least one individual")
NULL
}
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)+0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]
foreach(j = 1:(t-1), .combine='c', .packages=c("Matrix", "foreach")) %do%
{
A[t,j]<- 0.5*(A[j,fam[t,"dad"]]+A[j,fam[t,"mum"]])
A[j,t]<- A[t,j]
}
}
if (s>0 & d==0 )
{
if ( fam[t,"GEN"]==999)
{ warning("both dad and mum should be the same, one parent equal to zero for at least individual")
NULL }
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
foreach(j = 1:(t-1), .combine='c', .packages=c("Matrix", "foreach")) %do%
{
A[t,j]<-0.5*A[j,s]
A[j,t]<-A[t,j]
}
}
if (s==0 )
{
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
}
# cat(" MatbyGEN: ", t ,"\n")
t <- t+1
}
A
}
hom2<-function(data) {
library(Matrix)
n<-max(as.numeric(fam[,"ID"]))
t<-min(as.numeric(fam[,"ID"]))
A<-Matrix(0,nrow=n,ncol=n, sparse = T)
while(t <=n) {
s<-max(fam[t,"dad"],fam[t,"mum"])
d<-min(fam[t,"dad"],fam[t,"mum"])
if (s>0 & d>0 )
{
if (fam[t,"GEN"]==999 & s!=d)
{ warning("both dad and mum should be the same, different for at least one individual")
NULL
}
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)+0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]
for (j in 1:(t-1)) {
A[t,j]<- 0.5*(A[j,fam[t,"dad"]]+A[j,fam[t,"mum"]])
A[j,t]<- A[t,j]
}
}
if (s>0 & d==0 )
{
if ( fam[t,"GEN"]==999)
{ warning("both dad and mum should be the same, one parent equal to zero for at least individual")
NULL }
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
for (j in 1:(t-1)) {
A[t,j]<-0.5*A[j,s]
A[j,t]<-A[t,j]
}
}
if (s==0 )
{
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
}
# cat(" MatbyGEN: ", t ,"\n")
t <- t+1
}
A
}
hom3<-function(data) {
n<-max(as.numeric(fam[,"ID"]))
t<-min(as.numeric(fam[,"ID"]))
A<-matrix(0,nrow=n,ncol=n)
while(t <=n) {
s<-max(fam[t,"dad"],fam[t,"mum"])
d<-min(fam[t,"dad"],fam[t,"mum"])
if (s>0 & d>0 )
{
if (fam[t,"GEN"]==999 & s!=d)
{ warning("both dad and mum should be the same, different for at least one individual")
NULL
}
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)+0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]
for (j in 1:(t-1)) {
A[t,j]<- 0.5*(A[j,fam[t,"dad"]]+A[j,fam[t,"mum"]])
A[j,t]<- A[t,j]
}
}
if (s>0 & d==0 )
{
if ( fam[t,"GEN"]==999)
{ warning("both dad and mum should be the same, one parent equal to zero for at least individual")
NULL }
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
for (j in 1:(t-1)) {
A[t,j]<-0.5*A[j,s]
A[j,t]<-A[t,j]
}
}
if (s==0 )
{
A[t,t]<- 2-0.5^(fam[t,"GEN"]-1)
}
# cat(" MatbyGEN: ", t ,"\n")
t <- t+1
}
A
}
library(microbenchmark)
f_changed = function(fam) {
t_start <- min(which.max(fam$dad > 0), which.max(fam$mum > 0))
t_end <- max(fam[['ID']])
A<-matrix(0,nrow=t_end,ncol=t_end)
diag(A) <- 2-0.5^(fam[["GEN"]]-1)
for (t in t_start:t_end) {
A[t,t]<- sum(c(A[t,t], 0.5^(fam[t,"GEN"])*A[fam[t,"dad"],fam[t,"mum"]]))
for(j in 1:(t-1)) {
A[t,j]<- 0.5 * sum(c(A[j,fam[t,"dad"]],A[j,fam[t,"mum"]]))
A[j,t]<- A[t,j]
}
}
A
}
microbenchmark(
original = {
hom(fam)
}
, non_foreach = {
hom2(fam)
}
, non_sparse_non_each = {
hom3(fam)
}
, final_change = {
f_changed(fam)
}
,times = 100
)