I am trying to detect a circle in binary image using hough transform.
When I use Opencv's built-in function for the circular hough transform, it is OK and I can find the circle.
Now I try to write my own 'kernel' code for doing hough transform but is very very slow:
kernel void hough_circle(read_only image2d_t imageIn, global int* in,const int w_hough,__global int * circle)
{
sampler_t sampler=CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
int gid0 = get_global_id(0);
int gid1 = get_global_id(1);
uint4 pixel;
int x0=0,y0=0,r;
int maxval=0;
pixel=read_imageui(imageIn,sampler,(int2)(gid0,gid1));
if(pixel.x==255)
{
for(int r=20;r<150;r+=2)
{
// int r=100;
for(int theta=0; theta<360;theta+=2)
{
x0=(int) round(gid0-r*cos( (float) radians( (float) theta) ));
y0=(int) round(gid1-r*sin( (float) radians( (float) theta) ));
if((x0>0) && (x0<get_global_size(0)) && (y0>0)&&(y0<get_global_size(1)))
atom_inc(&in[w_hough*y0+x0]);
}
if(maxval<in[w_hough*y0+x0])
{
maxval=in[w_hough*y0+x0];
circle[0]=gid0;
circle[1]=gid1;
circle[2]=r;
}
}
}
}
There are source codes for the hough opencl library with opencv, but its hard to me for extract a specific function that helps me.
Can anyone offer a better source code example, or help me understand why this is so inefficient? the code main.cpp and kernel.cl compress in rar file http://www.files.com/set/527152684017e use opencv lib for read and display image >