双三次插值算法的图像缩放(Bi-Cubic Interpolation Algorithm for

2019-08-17 07:01发布

我试图写一个基本的双三次大小调整算法来调整的24位RGB位图。 我有一个大致的了解数学参与,而我使用这个实现从谷歌代码作为指导。 我没有使用任何外部库在这里 - 我只是用算法本身进行试验。 该位图被表示为一个普通std::vector<unsigned char>

inline unsigned char getpixel(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, unsigned x, unsigned y, int channel)
{
    if (x < src_width && y < src_height)
        return in[(x * 3 * src_width) + (3 * y) + channel];

    return 0;
}

std::vector<unsigned char> bicubicresize(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, std::size_t dest_width, std::size_t dest_height)
{
    std::vector<unsigned char> out(dest_width * dest_height * 3);

    const float tx = float(src_width) / dest_width;
    const float ty = float(src_height) / dest_height;
    const int channels = 3;
    const std::size_t row_stride = dest_width * channels;

    unsigned char C[5] = { 0 };

    for (int i = 0; i < dest_height; ++i)
    {
        for (int j = 0; j < dest_width; ++j)
        {
            const int x = int(tx * j);
            const int y = int(ty * i);
            const float dx = tx * j - x;
            const float dy = ty * i - y;

            for (int k = 0; k < 3; ++k)
            {
                for (int jj = 0; jj < 4; ++jj)
                {
                    const int z = y - 1 + jj;
                    unsigned char a0 = getpixel(in, src_width, src_height, z, x, k);
                    unsigned char d0 = getpixel(in, src_width, src_height, z, x - 1, k) - a0;
                    unsigned char d2 = getpixel(in, src_width, src_height, z, x + 1, k) - a0;
                    unsigned char d3 = getpixel(in, src_width, src_height, z, x + 2, k) - a0;
                    unsigned char a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                    unsigned char a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    unsigned char a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                    d0 = C[0] - C[1];
                    d2 = C[2] - C[1];
                    d3 = C[3] - C[1];
                    a0 = C[1];
                    a1 = -1.0 / 3 * d0 + d2 -1.0 / 6 * d3;
                    a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    out[i * row_stride + j * channels + k] = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
                }
            }
        }
    }

    return out;
}

问题 :当我用这个算法来缩减图像,它的工作原理除了输出图像包含右侧出于某种原因全黑的像素,给人的外观,它的被“裁剪”。

例:

输入图像:

输出图像:



回顾算法,我不明白为什么会发生这种事。 有谁看到这里的缺陷?

Answer 1:

尽量不要交换的宽度和高度。

   for (int i = 0; i < dest_width; ++i)
    {
        for (int j = 0; j < dest_height; ++j)


Answer 2:

我建议不使用此功能,因为它是书面非常糟糕。 你需要做两个卷积:首先通过X坐标然后Y.在这个函数所有这些盘旋在导致非常缓慢的工作同时进行。 如果你想看看JJ循环体,你可以发现,身体的各个第二部分从begining“D0 = C [0] - C [1]。” 因为只有这个循环的最后一次迭代拿出[]数组的影响可能JJ循环外移动(所有先前的迭代结果将overwrited)。



Answer 3:

你应该切换的xz当你调用getpixel ,并在getpixel你应该使用索引数组:

[(y * 3 * src_width) + (3 * x) + channel]


Answer 4:

getpixel(in, src_width, src_height, z, x, k)

z mean horizontal offset
x mean vertical offset

所以只需要修补getpixel功能,下面是补丁代码:

inline unsigned char getpixel(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, unsigned y, unsigned x, int channel)
{
    if (x < src_width && y < src_height)
        return in[(y * 3 * src_width) + (3 * x) + channel];

    return 0;
}

std::vector<unsigned char> bicubicresize(const std::vector<unsigned char>& in, 
    std::size_t src_width, std::size_t src_height, std::size_t dest_width, std::size_t dest_height)
{
    std::vector<unsigned char> out(dest_width * dest_height * 3);

    const float tx = float(src_width) / dest_width;
    const float ty = float(src_height) / dest_height;
    const int channels = 3;
    const std::size_t row_stride = dest_width * channels;

    unsigned char C[5] = { 0 };

    for (int i = 0; i < dest_height; ++i)
    {
        for (int j = 0; j < dest_width; ++j)
        {
            const int x = int(tx * j);
            const int y = int(ty * i);
            const float dx = tx * j - x;
            const float dy = ty * i - y;

            for (int k = 0; k < 3; ++k)
            {
                for (int jj = 0; jj < 4; ++jj)
                {
                    const int z = y - 1 + jj;
                    unsigned char a0 = getpixel(in, src_width, src_height, z, x, k);
                    unsigned char d0 = getpixel(in, src_width, src_height, z, x - 1, k) - a0;
                    unsigned char d2 = getpixel(in, src_width, src_height, z, x + 1, k) - a0;
                    unsigned char d3 = getpixel(in, src_width, src_height, z, x + 2, k) - a0;
                    unsigned char a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                    unsigned char a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    unsigned char a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                    d0 = C[0] - C[1];
                    d2 = C[2] - C[1];
                    d3 = C[3] - C[1];
                    a0 = C[1];
                    a1 = -1.0 / 3 * d0 + d2 -1.0 / 6 * d3;
                    a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
                    a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
                    out[i * row_stride + j * channels + k] = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
                }
            }
        }
    }

    return out;
}


文章来源: Bi-Cubic Interpolation Algorithm for Image Scaling