I have data in elasticsearch.
this is my actual doc https://docs.google.com/document/d/1DKID90I9ulUcut-S8UfrnSjY-3citEwmyfnJJmrIRU8/edit?usp=sharing
doc:
{
store_id:"abc",
event_timestamp:"2019-06-05 13:00:05",
event_type:"heartbeat"
}
I have store_id, range of dates and event type in the input.in output, I need the percentage amount of time device was online for that hour.
This is how we consider device online. If there is an event="heartbeat" for a store_id in an hour then we say the store is online.
example 1.
so if the range is of "2019-05-07" to "2019-05-08" and there are 14 docs with different hour then the percentage will be (14/(2*24))*100
example 2.
doc:
{
store_id:"abc",
event_timestamp:"2019-06-05 13:00:05",
event_type:"heartbeat"
}
doc:
{
store_id:"abc",
event_timestamp:"2019-06-05 14:00:05",
event_type:"heartbeat"
}
doc:
{
store_id:"abc",
event_timestamp:"2019-06-05 14:00:05",
event_type:"heartbeat"
}
if input was store_id="abc" and date_range="2019-06-05" to ""2019-06-05" and event_type="heartbeat" then output would be (2/(1*24)) because there are only two different hour with event=heartbeat of that store.
this is my query for the cumulative sum.If some How I can divide the final cumulative sum with difference between dates.
GET /internship38/_search
{
"query":
{
"bool":
{
"must":
[
{
"match" :
{
"attributes.store_id" : "41b15888-0c2f-48f9-89d0-dc7aad19f52b"
}
},
{
"match":
{
"event_type":"app_sent_heartbeat"
}
}
]
}
},
"aggs":
{
"my_date_histo":{
"date_histogram":{
"field":"arrival_timestamp",
"interval":"day"
},
"aggs":
{
"distinct_hours": {
"cardinality": {
"script": {
"lang": "painless",
"source": "doc[params.date_field].value.hourOfDay;",
"params": {
"date_field": "arrival_timestamp"
}
}
}
},
"cumulative_hours": {
"cumulative_sum": {
"buckets_path": "distinct_hours"
}
}
}
}
}
}
Can It be done in java? for example https://www.programcreek.com/java-api-examples/?api=org.elasticsearch.script.Script