前言
这个问题是不是(P)RNG和行为rand()
这是关于使用两个值的权柄模均匀分布。
介绍
我知道,一个人不应该使用模%
转换值从范围到另一个,例如从一开始0和5之间的值rand()
函数:会有偏差。 它在这里解释https://bitbucket.org/haypo/hasard/src/ebf5870a1a54/doc/common_errors.rst?at=default和这个答案为什么人们说,有模偏置使用随机数生成器时?
但是调查一些代码,在找错后的今天,我做了一个工具来演示模的behavor: https://gitorious.org/modulo-test/modulo-test/trees/master ,发现这是不够清晰。
甲骰子只有3比特
我在范围0..5 6点的值进行检查。 只需要3个位来编码这些值。
$ ./modulo-test 10000 6 3
interations = 10000, range = 6, bits = 3 (0x00000007)
[0..7] => [0..5]
theorical occurences 1666.67 probability 0.16666667
[ 0] occurences 2446 probability 0.24460000 ( +46.76%)
[ 1] occurences 2535 probability 0.25350000 ( +52.10%)
[ 2] occurences 1275 probability 0.12750000 ( -23.50%)
[ 3] occurences 1297 probability 0.12970000 ( -22.18%)
[ 4] occurences 1216 probability 0.12160000 ( -27.04%)
[ 5] occurences 1231 probability 0.12310000 ( -26.14%)
minimum occurences 1216.00 probability 0.12160000 ( -27.04%)
maximum occurences 2535.00 probability 0.25350000 ( +52.10%)
mean occurences 1666.67 probability 0.16666667 ( +0.00%)
stddev occurences 639.43 probability 0.06394256 ( 38.37%)
随着输入的3位,结果确实是可怕的,但像预期的那样。 见回答https://stackoverflow.com/a/14614899/611560
增加的输入的比特数
令我困惑的,是加大投入的位数做出的结果不同。 你不应该忘记,增加迭代次数,如样品的数量,否则结果可能是错误的(见错误统计 )。
让我们从4位尝试:
$ ./modulo-test 20000 6 4
interations = 20000, range = 6, bits = 4 (0x0000000f)
[0..15] => [0..5]
theorical occurences 3333.33 probability 0.16666667
[ 0] occurences 3728 probability 0.18640000 ( +11.84%)
[ 1] occurences 3763 probability 0.18815000 ( +12.89%)
[ 2] occurences 3675 probability 0.18375000 ( +10.25%)
[ 3] occurences 3721 probability 0.18605000 ( +11.63%)
[ 4] occurences 2573 probability 0.12865000 ( -22.81%)
[ 5] occurences 2540 probability 0.12700000 ( -23.80%)
minimum occurences 2540.00 probability 0.12700000 ( -23.80%)
maximum occurences 3763.00 probability 0.18815000 ( +12.89%)
mean occurences 3333.33 probability 0.16666667 ( +0.00%)
stddev occurences 602.48 probability 0.03012376 ( 18.07%)
让我们从5位尝试:
$ ./modulo-test 40000 6 5
interations = 40000, range = 6, bits = 5 (0x0000001f)
[0..31] => [0..5]
theorical occurences 6666.67 probability 0.16666667
[ 0] occurences 7462 probability 0.18655000 ( +11.93%)
[ 1] occurences 7444 probability 0.18610000 ( +11.66%)
[ 2] occurences 6318 probability 0.15795000 ( -5.23%)
[ 3] occurences 6265 probability 0.15662500 ( -6.03%)
[ 4] occurences 6334 probability 0.15835000 ( -4.99%)
[ 5] occurences 6177 probability 0.15442500 ( -7.34%)
minimum occurences 6177.00 probability 0.15442500 ( -7.34%)
maximum occurences 7462.00 probability 0.18655000 ( +11.93%)
mean occurences 6666.67 probability 0.16666667 ( +0.00%)
stddev occurences 611.58 probability 0.01528949 ( 9.17%)
让我们用6位尝试:
$ ./modulo-test 80000 6 6
interations = 80000, range = 6, bits = 6 (0x0000003f)
[0..63] => [0..5]
theorical occurences 13333.33 probability 0.16666667
[ 0] occurences 13741 probability 0.17176250 ( +3.06%)
[ 1] occurences 13610 probability 0.17012500 ( +2.08%)
[ 2] occurences 13890 probability 0.17362500 ( +4.18%)
[ 3] occurences 13702 probability 0.17127500 ( +2.77%)
[ 4] occurences 12492 probability 0.15615000 ( -6.31%)
[ 5] occurences 12565 probability 0.15706250 ( -5.76%)
minimum occurences 12492.00 probability 0.15615000 ( -6.31%)
maximum occurences 13890.00 probability 0.17362500 ( +4.18%)
mean occurences 13333.33 probability 0.16666667 ( +0.00%)
stddev occurences 630.35 probability 0.00787938 ( 4.73%)
题
请解释一下我为什么结果改变时,输入位(和相应增加样本数)有什么不同? 什么是这背后的数学推理?
统计错误
在以前的版本的问题,我表现出与输入的32位,只有百万次迭代,如10 ^ 6个样品测试,说我很惊讶地得到正确的结果。 这是真的错了,我惭愧的:必须有N次样本有信心获得发电机的所有2 ^ 32个值。 这里10 ^ 6是方式小compaired至2 ^ 32。 奖金能够在数学/统计的语言来解释这个人。 。
此错误的结果:
$ ./modulo-test 1000000 6 32
interations = 1000000, range = 6, bits = 32 (0xffffffff)
[0..4294967295] => [0..5]
theorical occurences 166666.67 probability 0.16666667
[ 0] occurences 166881 probability 0.16688100 ( +0.13%)
[ 1] occurences 166881 probability 0.16688100 ( +0.13%)
[ 2] occurences 166487 probability 0.16648700 ( -0.11%)
[ 3] occurences 166484 probability 0.16648400 ( -0.11%)
[ 4] occurences 166750 probability 0.16675000 ( +0.05%)
[ 5] occurences 166517 probability 0.16651700 ( -0.09%)
minimum occurences 166484.00 probability 0.16648400 ( -0.11%)
maximum occurences 166881.00 probability 0.16688100 ( +0.13%)
mean occurences 166666.67 probability 0.16666667 ( +0.00%)
stddev occurences 193.32 probability 0.00019332 ( 0.12%)
我仍然有阅读和重新阅读的优秀文章Zed的邵氏 “程序员需要了解统计数据,否则我将杀死他们” 。