In the data included below I have three sites (AAA,BBB,CCC) and individuals within each site (7, 12, 7 respectively). For each individual I have observed values (ObsValues) and three sets of predicted values each with a standard error. I have 26 rows (i.e. 26 individuals) and 9 columns.
The data is included here through dput()
help <- structure(list(StudyArea = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L), .Label = c("AAA", "BBB", "CCC"), class = "factor"),
Ind = structure(1:26, .Label = c("AAA_F01", "AAA_F17", "AAA_F33",
"AAA_F49", "AAA_F65", "AAA_F81", "AAA_F97", "BBB_P01", "BBB_P02",
"BBB_P03", "BBB_P04", "BBB_P05", "BBB_P06", "BBB_P07", "BBB_P08",
"BBB_P09", "BBB_P10", "BBB_P11", "BBB_P12", "CCC_F02", "CCC_F03",
"CCC_F04", "CCC_F05", "CCC_F06", "CCC_F07", "CCC_F08"), class = "factor"),
ObsValues = c(22L, 50L, 8L, 15L, 54L, 30L, 11L, 90L, 6L,
53L, 9L, 42L, 72L, 40L, 60L, 58L, 1L, 20L, 37L, 2L, 50L,
68L, 20L, 19L, 58L, 5L), AAAPred = c(28L, 52L, 6L, 15L, 35L,
31L, 13L, 79L, 6L, 58L, 5L, 42L, 88L, 49L, 68L, 60L, 1L,
26L, 46L, 0L, 34L, 71L, 20L, 15L, 35L, 5L), AAAPredSE = c(3.5027829,
4.7852191, 1.231803, 2.5244013, 4.873907, 3.8854192, 2.3532752,
6.3444402, 1.7387295, 5.605111, 1.667818, 4.4709107, 7.0437967,
5.447496, 6.0840486, 5.4371275, 0.8156916, 3.5153847, 4.698754,
0, 3.8901103, 5.993616, 3.1720272, 2.6777869, 4.5647313,
1.4864128), BBBPred = c(14L, 43L, 5L, 13L, 26L, 32L, 14L,
80L, 5L, 62L, 4L, 44L, 67L, 44L, 55L, 42L, 1L, 20L, 47L,
0L, 26L, 51L, 15L, 16L, 34L, 6L), BBBPredSE = c(3.1873435,
4.8782831, 1.3739863, 2.5752273, 4.4155679, 3.8102168, 2.3419518,
6.364606, 1.7096028, 5.6333421, 1.5861323, 4.4951428, 6.6046699,
5.302902, 5.9244328, 5.1887055, 0.8268689, 3.4014041, 4.6600598,
0, 3.8510512, 5.5776686, 3.0569531, 2.6358433, 4.5273782,
1.4263518), CCCPred = c(29L, 53L, 7L, 15L, 44L, 32L, 15L,
86L, 8L, 61L, 5L, 46L, 99L, 54L, 74L, 67L, 1L, 30L, 51L,
1L, 37L, 94L, 21L, 17L, 36L, 6L), CCCPredSE = c(3.4634488,
4.7953389, 0.9484051, 2.5207022, 5.053452, 3.8072731, 2.2764727,
6.3605968, 1.6044067, 5.590048, 1.6611899, 4.4183913, 7.0124638,
5.6495918, 6.1091934, 5.4797929, 0.8135164, 3.4353934, 4.6261147,
0.8187396, 3.7936333, 5.6512378, 3.1686123, 2.633179, 4.5841921,
1.3989955)), .Names = c("StudyArea", "Ind", "ObsValues",
"AAAPred", "AAAPredSE", "BBBPred", "BBBPredSE", "CCCPred", "CCCPredSE"
), class = "data.frame", row.names = c(NA, -26L))
The head()
and dim()
of help
are below too
head(help)
StudyArea Ind ObsValues AAAPred AAAPredSE BBBPred BBBPredSE CCCPred CCCPredSE
1 AAA AAA_F01 22 28 3.502783 14 3.187343 29 3.4634488
2 AAA AAA_F17 50 52 4.785219 43 4.878283 53 4.7953389
3 AAA AAA_F33 8 6 1.231803 5 1.373986 7 0.9484051
4 AAA AAA_F49 15 15 2.524401 13 2.575227 15 2.5207022
5 AAA AAA_F65 54 35 4.873907 26 4.415568 44 5.0534520
6 AAA AAA_F81 30 31 3.885419 32 3.810217 32 3.8072731
dim(help)
> dim(help)
[1] 26 9
I am a relative newcomer to ggplot and am trying to make a plot that displays the observed and predicted values for each individual with a different color for each StudyArea. I can manually add points and force the color with the code below, however this feel rather clunky and also does not produce a legend as I have not specified color in aes().
require(ggplot2)
ggplot(help, aes(x=Ind, y=ObsValues))+
geom_point(color="red", pch = "*", cex = 10)+
geom_point(aes(y = AAAPred), color="blue")+
geom_errorbar(aes(ymin=AAAPred-AAAPredSE, ymax=AAAPred+AAAPredSE), color = "blue")+
geom_point(aes(y = BBBPred), color="darkgreen")+
geom_errorbar(aes(ymin=BBBPred-BBBPredSE, ymax=BBBPred+BBBPredSE), color = "darkgreen")+
geom_point(aes(y = CCCPred), color="black")+
geom_errorbar(aes(ymin=CCCPred-CCCPredSE, ymax=CCCPred+CCCPredSE), color = "black")+
theme(axis.text.x=element_text(angle=30, hjust=1))
In the figure above, the asterisks are the observed values and the values are the predicted values, one from each StudyArea.
I tried to melt() the data, but ran into more problems plotting. That being said, I suspect melt()ing or reshape()ing is the best option.
Any suggestions on how to best alter/restructure the help
data so that I can plot the observed and predicted values for each individual with a different color for each StudyArea would be greatly appreciated.
I also hope to produce a legend - the likely default once the data is correctly formatted
Note: Indeed the resulting figure is very busy will likely be simplified once I get a better handle on ggplot.
thanks in advance.