Right now, I have the following data.frame which was created by original.df %.% group_by(Category) %.% tally() %.% arrange(desc(n))
.
DF <- structure(list(Category = c("E", "K", "M", "L", "I", "A",
"S", "G", "N", "Q"), n = c(163051, 127133, 106680, 64868, 49701,
47387, 47096, 45601, 40056, 36882)), .Names = c("Category",
"n"), row.names = c(NA, 10L), class = c("tbl_df", "tbl", "data.frame"
))
Category n
1 E 163051
2 K 127133
3 M 106680
4 L 64868
5 I 49701
6 A 47387
7 S 47096
8 G 45601
9 N 40056
10 Q 36882
I want to create an "Other" field from the bottom ranked Categories by n. i.e.
Category n
1 E 163051
2 K 127133
3 M 106680
4 L 64868
5 I 49701
6 Other 217022
Right now, I am doing
rbind(filter(DF, rank(rev(n)) <= 5),
summarise(filter(DF, rank(rev(n)) > 5), Category = "Other", n = sum(n)))
which collapses all categories not in the top 5 into the Other category.
But I'm curious whether there's a better way in dplyr
or some other existing package. By "better" I mean more succinct/readable. I'm also interested in methods with cleverer or more flexible ways to choose Other
.
Different package/different syntax version:
library(data.table)
dt = as.data.table(DF)
dt[order(-n), # your data is already sorted, so this does nothing for it
if (.BY[[1]]) .SD else list("Other", sum(n)),
by = 1:nrow(dt) <= 5][, !"nrow", with = F]
# Category n
#1: E 163051
#2: K 127133
#3: M 106680
#4: L 64868
#5: I 49701
#6: Other 217022
This is another approach, assuming that each category (of the top 5 at least) only occurs once:
df %.%
arrange(desc(n)) %.% #you could skip this step since you arranged the input df already according to your question
mutate(Category = ifelse(1:n() > 5, "Other", Category)) %.%
group_by(Category) %.%
summarize(n = sum(n))
# Category n
#1 E 163051
#2 I 49701
#3 K 127133
#4 L 64868
#5 M 106680
#6 Other 217022
Edit:
I just noticed that my output is not order by decreasing n
any more. After running the code again, I found out that the order is kept until after the group_by(Category)
but when I run the summarize
afterwards, the order is gone (or rather, it seems to be ordered by Category
). Is that supposed to be like that?
Here are three more ways:
m <- 5 #number of top results to show in final table (excl. "Other")
n <- m+1
#preserves the order (or better: reesatblishes it by index)
df <- arrange(df, desc(n)) %.% #this could be skipped if data already ordered
mutate(idx = 1:n(), Category = ifelse(idx > m, "Other", Category)) %.%
group_by(Category) %.%
summarize(n = sum(n), idx = first(idx)) %.%
arrange(idx) %.%
select(-idx)
#doesnt preserve the order (same result as in first dplyr solution, ordered by Category)
df[order(df$n, decreasing=T),] #this could be skipped if data already ordered
df[n:nrow(df),1] <- "Other"
df <- aggregate(n ~ Category, data = df, FUN = "sum")
#preserves the order (without extra index)
df[order(df$n, decreasing=T),] #this could be skipped if data already ordered
df[n:nrow(df),1] <- "Other"
df[n,2] <- sum(df$n[df$Category == "Other"])
df <- df[1:n,]
This function modifies a column, replacing the infrequent entries with Other
, either by specifying a minimum frequency, or by specifying the resultant number of categories intended.
#' @title Group infrequent entries into 'Other category'
#' @description Useful when you want to constrain the number of unique values in a column.
#' @param .data Data containing variable.
#' @param var Variable containing infrequent entries, to be collapsed into "Other".
#' @param n Threshold for total number of categories above "Other".
#' @param count Threshold for total count of observations before "Other".
#' @param by Extra variables to group by when calculating \code{n} or \code{count}.
#' @param copy Should \code{.data} be copied? Currently only \code{TRUE} is supported.
#' @param other.category Value that infrequent entries are to be collapsed into. Defaults to \code{"Other"}.
#' @return \code{.data} but with \code{var} changed to be grouped into smaller categories.
#' @export
mutate_other <- function(.data, var, n = 5, count, by = NULL, copy = TRUE, other.category = "Other"){
stopifnot(is.data.table(.data),
is.character(other.category),
identical(length(other.category), 1L))
had.key <- haskey(.data)
if (!isTRUE(copy)){
stop("copy must be TRUE")
}
out <- copy(.data)
if (had.key){
orig_key <- key(out)
} else {
orig_key <- "_order"
out[, "_order" := 1:.N]
setkeyv(out, "_order")
}
if (is.character(.data[[var]])){
stopifnot(!("nvar" %in% names(.data)),
var %in% names(.data))
N <- .rank <- NULL
n_by_var <-
out %>%
.[, .N, keyby = c(var, by)] %>%
.[, .rank := rank(-N)]
out <- merge(out, n_by_var, by = c(var, by))
if (missing(count)){
out[, (var) := dplyr::if_else(.rank <= n, out[[var]], other.category)]
} else {
out[, (var) := dplyr::if_else(N >= count, out[[var]], other.category)]
}
out <-
out %>%
.[, N := NULL] %>%
.[, .rank := NULL]
setkeyv(out, orig_key)
if (!had.key){
out[, (orig_key) := NULL]
setkey(out, NULL)
}
out
} else {
warning("Attempted to use by = on a non-character vector. Aborting.")
return(.data)
}
}
https://github.com/HughParsonage/hutils/blob/master/R/mutate_other.R