I'm a beginner in Linux and Virtual Memory, still struggling in understanding the relationship between Virtual Memory and Executable Object Files.
let's say we have a executable object file a.out stored on hard drive disk, and lets say originally the a.out has a .data section with a global variable with a value of 2018.
When the loader run, it allocates a contiguous chunk of virtual pages marks them as invalid (i.e., not cached) and points their page table entries to the appropriate locations in the a.out. The loader never actually copies any data from disk into memory. The data is paged in automatically and on demand by the virtual memory system the first time each page is referenced.
My question is: suppose the program change the value of global variable from 2018 to 2019 on the run time and it seems that the virtual page that contains the global variable will eventually page out to the disk, which means that .data section has the global variable to be 2019 now, so we change the executable object file which are not supposed to be changed? otherwise we get a different value each time we finish and run the program again?
In general (not specifically for Linux)...
When an executable file is started, the OS (kernel) creates a virtual address space and an (initially empty) process, and examines the executable file's header. The executable file's header describes "sections" (e.g. .text
, .rodata
, .data
, .bss
, etc) where each section has different attributes - if the contents of the section should be put in the virtual address space or not (e.g. is a symbol table or something that isn't used at run-time), if the contents are part of the file or not (e.g. .bss
), and if the area should be executable, read-only or read/write.
Typically, (used parts of) the executable file are cached by the virtual file system; and pieces of the file that are already in the VFS cache can be mapped (as "copy on write") into the new process' virtual address space. For parts that aren't already in the VFS cache, those pieces of the file can be mapped as "need fetching" into the new process' virtual address space.
Then the process is started (given CPU time).
If the process reads data from a page that hasn't been loaded yet; the OS (kernel) pauses the process, fetches the page from the file on disk into the VFS cache, then also maps the page as "copy on write" into the process; then allows the process to continue (allows the process to retry the read from the page that wasn't loaded, which will work now that the page is loaded).
If the process writes to a page that is still "copy on write"; the OS (kernel) pauses the process, allocates a new page and copies the original page's data into it, then replaces the original page with the process' own copy; then allows the process to continue (allows the process to retry the write which will work now that the process has it's own copy).
If the process writes to data from a page that hasn't been loaded yet; the OS (kernel) combines both of the previous things (fetches original page from disk into VFS cache, creates a copy, maps the process' copy into the process' virtual address space).
If the OS starts to run out of free RAM; then:
pages of file data that are in the VFS cache but aren't shared as "copy on write" with any process can be freed in the VFS without doing anything else. Next time the file is used those pages will be fetched from the file on disk into the VFS cache.
pages of file data that are in the VFS cache and are also shared as "copy on write" with any process can be freed in the VFS and the copies in any/all processes marked as "not fetched yet". Next time the file is used (including when a process accesses the "not fetched yet" page/s) those pages will be fetched from the file on disk into the VFS cache and then mapped as "copy on write" in the process/es).
pages of data that have been modified (either because they were originally "copy on write" but got copied, or because they weren't part of the executable file at all - e.g. .bss
section, the executable's heap space, etc) can be saved to swap space and then freed. When the process accesses the page/s again they will be fetched from swap space.
Note: If the executable file is stored on unreliable media (e.g. potentially scratched CD) a "smarter than average" OS may load the entire executable file into VFS cache and/or swap space initially; because there's no sane way to handle "read error from memory mapped file" while the process is using the file other than making the process crash (e.g. SIGSEGV
) and making it look like the executable was buggy when it was not, and because this improves reliability (because you're depending on more reliable swap and not depending on a less reliable scratched CD). Also; if the OS guards against file corruption or malware (e.g. has a CRC or digital signature built into executable files) then the OS may (should) load everything into memory (VFS cache) to check the CRC or digital signature before allowing the executable to be executed, and (for secure systems, in case the file on disk is modified while the executable is running) when freeing RAM may stored unmodified pages in "more trusted" swap space (the same as it would if the page was modified) to avoid fetching the data from the original "less trusted" file (partly because you don't want to do the whole digital signature check every time a page is loaded from the file).
My question is: suppose the program change the value of global variable from 2018 to 2019 on the run time and it seems that the virtual page that contains the global variable will eventually page out to the disk, which means that .data section has the global variable to be 2019 now, so we change the executable object file which are not supposed to be changed?
The page containing 2018
will begin as "not fetched", then (when its accessed) loaded into VFS cache and mapped into the process as "copy on write". At either of these points the OS may free the memory and fetch the data (that hasn't been changed) from the executable file on disk if it's needed again.
When the process modifies the global variable (changes it to contain 2019
) the OS creates a copy of it for the process. After this point, if the OS wants to free the memory the OS needs to save the page's data in swap space, and load the page's data back from swap space if it's accessed again. The executable file is not modified and (for that page, for that process) the executable file isn't used again.