I have a struct type with a *int64
field.
type SomeType struct {
SomeField *int64
}
At some point in my code, I want to declare a literal of this (say, when I know said value should be 0, or pointing to a 0, you know what I mean)
instance := SomeType{
SomeField: &0,
}
...except this doesn't work
./main.go:xx: cannot use &0 (type *int) as type *int64 in field value
So I try this
instance := SomeType{
SomeField: &int64(0),
}
...but this also doesn't work
./main.go:xx: cannot take the address of int64(0)
How do I do this? The only solution I can come up with is using a placeholder variable
var placeholder int64
placeholder = 0
instance := SomeType{
SomeField: &placeholder,
}
Note: the &0
syntax works fine when it's a *int instead of an *int64
. Edit: no it does not. Sorry about this.
Edit:
Aparently there was too much ambiguity to my question. I'm looking for a way to literally state a *int64
. This could be used inside a constructor, or to state literal struct values, or even as arguments to other functions. But helper functions or using a different type are not solutions I'm looking for.
The Go Language Specification (Address operators) does not allow to take the address of a numeric constant (not of an untyped nor of a typed constant).
The operand must be addressable, that is, either a variable, pointer indirection, or slice indexing operation; or a field selector of an addressable struct operand; or an array indexing operation of an addressable array. As an exception to the addressability requirement, x
[in the expression of &x
] may also be a (possibly parenthesized) composite literal.
For reasoning why this isn't allowed, see related question: Find address of constant in go. A similar question (similarly not allowed to take its address): How can I store reference to the result of an operation in Go?
Your options (try all on the Go Playground):
1) With new()
You can simply use the builtin new()
function to allocate a new zero-valued int64
and get its address:
instance := SomeType{
SomeField: new(int64),
}
But note that this can only be used to allocate and obtain a pointer to the zero value of any type.
2) With helper variable
Simplest and recommended for non-zero elements is to use a helper variable whose address can be taken:
helper := int64(2)
instance2 := SomeType{
SomeField: &helper,
}
3) With helper function
Or if you need this many times, you can create a helper function which allocates and returns an *int64
:
func create(x int64) *int64 {
return &x
}
And using it:
instance3 := SomeType{
SomeField: create(3),
}
4) With a one-liner anonymous function
instance4 := SomeType{
SomeField: func() *int64 { i := int64(4); return &i }(),
}
Or as a (shorter) alternative:
instance4 := SomeType{
SomeField: func(i int64) *int64 { return &i }(4),
}
5) With slice literal, indexing and taking address
If you would want *SomeField
to be other than 0
, then you need something addressable.
You can still do that, but that's ugly:
instance5 := SomeType{
SomeField: &[]int64{5}[0],
}
fmt.Println(*instance2.SomeField) // Prints 5
What happens here is an []int64
slice is created with a literal, having one element (5
). And it is indexed (0th element) and the address of the 0th element is taken. In the background an array of [1]int64
will also be allocated and used as the backing array for the slice. So there is a lot of boilerplate here.
6) With a helper struct literal
Let's examine the exception to the addressability requirements:
As an exception to the addressability requirement, x
[in the expression of &x
] may also be a (possibly parenthesized) composite literal.
This means that taking the address of a composite literal, e.g. a struct literal is ok. If we do so, we will have the struct value allocated and a pointer obtained to it. But if so, another requirement will become available to us: "field selector of an addressable struct operand". So if the struct literal contains a field of type int64
, we can also take the address of that field!
Let's see this option in action. We will use this wrapper struct type:
type intwrapper struct {
x int64
}
And now we can do:
instance6 := SomeType{
SomeField: &(&intwrapper{6}).x,
}
Note that this
&(&intwrapper{6}).x
means the following:
& ( (&intwrapper{6}).x )
But we can omit the "outer" parenthesis as the address operator &
is applied to the result of the selector expression.
Also note that in the background the following will happen (this is also a valid syntax):
&(*(&intwrapper{6})).x
7) With helper anonymous struct literal
The principle is the same as with case #6, but we can also use an anonymous struct literal, so no helper/wrapper struct type definition needed:
instance7 := SomeType{
SomeField: &(&struct{ x int64 }{7}).x,
}
Use a function which return an address of a int64 variable will solve the problem.
In the below code we use a function f which accepts integer and
return a pointer value which holds the address of the integer. By
using this method we can easily solve the above problem.
type myStr struct {
url *int64
}
func main() {
f := func(s int64) *int64 {
return &s
}
myStr{
url: f(12345),
}
}