Although the MATLAB owns the built-in solve()
to solve the quartic equation, the solve()
function gives some error information in some cases. So I write a user-defined function called solveQuartic()
to solve the roots of quartic equations.
The reference that I find is here
MY TRIAL
function [res] = solveQuartic(a, b, c, d, e)
p = (8*a*c - 3*b^2)/(8*a^2);
q = (b^3 - 4*a*b*c + 8^a^2*d)/(8*a^3);
delta0 = c^2-3*b*d + 12*a*e;
delta1 = 2*c^3 - 9*b*c*d + 27*b^2*e + 27*a*d^2 - 72*a*c*e;
Q = ((delta1 + sqrt(delta1^2 - 4*delta0^3))*0.5)^(1/3);
S = 0.5*sqrt(-2/3*p + (Q + delta0/Q)/(3*a));
x1 = -b/(4*a) - S - 0.5*sqrt(-4*S^2-2*p + q/S);
x2 = -b/(4*a) - S + 0.5*sqrt(-4*S^2-2*p + q/S);
x3 = -b/(4*a) + S - 0.5*sqrt(-4*S^2-2*p - q/S);
x4 = -b/(4*a) + S + 0.5*sqrt(-4*S^2-2*p - q/S);
res = [x1; x2; x3; x4];
end
TEST
res = solveQuartic(1,2,3,4,5)
-4.1425 - 0.0000i 1.5669 + 0.0000i 0.2878 + 3.3001i 0.2878 - 3.3001i
However, when I implement the formula in Mathematica as below:
solveQuartic[a_, b_, c_, d_, e_] :=
Module[{p, q, delta0, delta1, Q, S, x1, x2, x3, x4},
p = (8*a*c - 3*b^2)/(8*a^2);
q = (b^3 - 4*a*b*c + 8^a^2*d)/(8*a^3);
delta0 = c^2 - 3*b*d + 12*a*e;
delta1 = 2*c^3 - 9*b*c*d + 27*b^2*e + 27*a*d^2 - 72*a*c*e;
Q = ((delta1 + Sqrt[delta1^2 - 4*delta0^3])*0.5)^(1/3);
S = 0.5*Sqrt[-2/3*p + (Q + delta0/Q)/(3*a)];
x1 = -b/(4*a) - S - 0.5*Sqrt[-4*S^2 - 2*p + q/S];
x2 = -b/(4*a) - S + 0.5*Sqrt[-4*S^2 - 2*p + q/S];
x3 = -b/(4*a) + S - 0.5*Sqrt[-4*S^2 - 2*p - q/S];
x4 = -b/(4*a) + S + 0.5*Sqrt[-4*S^2 - 2*p - q/S];
{x1, x2, x3, x4}
]
solveQuartic[1, 2, 3, 4, 5] // MatrixForm
In addition, I can use the Solve[]
to varify my answer
Solve[{1, 2, 3, 4, 5}.Table[x^i, {i, 4, 0, -1}] == 0, x] // N // TableForm
QUESTION
- Could someone know the reason? THX a lot:)