I have my tromino program. However, now that it needs to be converted to graphics (which I left for last). I am pretty confused on how to do this, I know some basics about graphics but looking at my program it seems I might have to do a lot of modification to make it work.
Is there a simple way to do this? Basically I need to convert the trominos which I have as numbers right now onto a chessboard (which the size is specified by the user). And the deficient square being any color that indicates it is the location of the deficient square. Here is the code:
import java.util.*;
public class tromino {
private int[][] grid;
private int currentNum;
// Pre-condition: size must be a perfect power of 2 and 0<=x<size, 0<=y<size
// Post-condition: creates an empty tromino object with dimensions size x size.
public tromino(int size, int x, int y) {
int actualsize = 1;
while (actualsize < size) actualsize*=2;
// Make sure the grid size is a perfect power of 2.
grid = new int[actualsize][actualsize];
currentNum = 1;
// Fill in the grid with all empty squares.
for (int i=0; i<actualsize; i++) {
for (int j=0; j<actualsize; j++) {
grid[i][j] = 0;
}
}
// This represents the original hole in the tromino.
grid[x][y] = -1;
}
// Wrapper call for recursive method.
public void tile() {
tileRec(grid.length, 0, 0);
}
private void tileRec(int size, int topx, int topy) {
// No recursive case needed here, just fill in your one tromino...
if (size == 2) {
// Fill in the one necessary tromino. The hole is identified by a
// non-zero number, so don't fill in that one square.
for (int i=0; i<size; i++)
for (int j=0; j<size; j++)
if (grid[topx+i][topy+j] == 0)
grid[topx+i][topy+j] = currentNum;
// Advance to the next tromino.
currentNum++;
}
// Recursive case...
else {
// Find coordinates of missing hole
int savex=topx, savey=topy;
for (int x=topx; x<topx+size; x++)
for (int y=topy; y<topy+size; y++)
if (grid[x][y] != 0) {
savex = x;
savey = y;
}
// Hole in upper left quadrant.
if (savex < topx + size/2 && savey < topy + size/2) {
// Recursively tile upper left quadrant.
tileRec(size/2, topx, topy);
// Fill in middle tromino
grid[topx+size/2][topy+size/2-1] = currentNum;
grid[topx+size/2][topy+size/2] = currentNum;
grid[topx+size/2-1][topy+size/2] = currentNum;
// Advance to the next tromino
currentNum++;
// Now we can make our three other recursive calls.
tileRec(size/2, topx, topy+size/2);
tileRec(size/2, topx+size/2, topy);
tileRec(size/2, topx+size/2, topy+size/2);
}
// Hole in upper right quadrant
else if (savex < topx + size/2 && savey >= topy + size/2) {
// Recursively tile upper right quadrant.
tileRec(size/2, topx, topy+size/2);
// Fill in middle tromino
grid[topx+size/2][topy+size/2-1] = currentNum;
grid[topx+size/2][topy+size/2] = currentNum;
grid[topx+size/2-1][topy+size/2-1] = currentNum;
// Advance to the next tromino
currentNum++;
// Now we can make our three other recursive calls.
tileRec(size/2, topx, topy);
tileRec(size/2, topx+size/2, topy);
tileRec(size/2, topx+size/2, topy+size/2);
}
// Hole in bottom left quadrant
else if (savex >= topx + size/2 && savey < topy + size/2) {
// Recursively tile bottom left quadrant.
tileRec(size/2, topx+size/2, topy);
// Fill in middle tromino
grid[topx+size/2-1][topy+size/2] = currentNum;
grid[topx+size/2][topy+size/2] = currentNum;
grid[topx+size/2-1][topy+size/2-1] = currentNum;
// Advance to the next tromino
currentNum++;
// Now we can make our three other recursive calls.
tileRec(size/2, topx, topy);
tileRec(size/2, topx, topy+size/2);
tileRec(size/2, topx+size/2, topy+size/2);
}
else {
// Recursively tile bottom right quadrant.
tileRec(size/2, topx+size/2, topy+size/2);
// Fill in middle tromino
grid[topx+size/2-1][topy+size/2] = currentNum;
grid[topx+size/2][topy+size/2-1] = currentNum;
grid[topx+size/2-1][topy+size/2-1] = currentNum;
// Advance to the next tromino
currentNum++;
// Now we can make our three other recursive calls.
tileRec(size/2, topx+size/2, topy);
tileRec(size/2, topx, topy+size/2);
tileRec(size/2, topx, topy);
}
} // end large if-else
} // end tileRec
// Prints out the current object.
public void print() {
for (int i=0; i<grid.length; i++) {
for (int j=0; j<grid[i].length; j++)
System.out.print(grid[i][j] + "\t");
System.out.println();
}
}
public static void main(String[] args) {
Scanner stdin = new Scanner(System.in);
// Get user input...
System.out.println("How big do you want your Tromino grid?");
System.out.println("Please enter a perfect power of 2.");
int size = stdin.nextInt();
System.out.println("Where do you want the hole?");
System.out.println("Answer with an x and y coordinate separated by spaces.");
int x = stdin.nextInt();
int y = stdin.nextInt();
// Create our object and tile it!
tromino thisguy = new tromino(size, x, y);
thisguy.tile();
// Print out the trominoed grid.
System.out.println("Here's your final grid:\n");
thisguy.print();
}
}
UPDATED GRAPHICS, although still I am confused on how to finish my code?
import java.util.*;
import java.awt.*;
import javax.swing.*;
class DrawingPanelTest2{
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
double pw = input.nextDouble();
myPan panel = new myPan(pw); //calling class myPan of JPanel (put stuff inside frame)
JFrame application = new JFrame();
application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
application.add(panel);
application.setSize(400, 400);
application.setVisible(true);
}
}
class myPan extends JPanel{
public double pow; //pow variable of type double
public tri play[]; //constructor intializes tromino
public background back; //type background variable back
public myPan(double p){ //method calling p
pow = p; //pow = p (method calling pow now)
back = new background(p); //back = call to method background w/var p
play = new tri[10]; //this is where to create all of the triominoes
//example way (rough idea)
}
public void paintComponent(Graphics g){ //new method of type void
super.paintComponent(g); //refers to parent's method paintCompenent
back.paintBackground(g); //call method paintBackground
for(int i = 0; i < play.length; i++){ //paint all of the triominos
play[i].paintTri(g); //paint the trominoes
}
}
}
class background{
public double pow;
int across; //across (row)
int up; //column
public boolean filled[][];
public background(double p){
pow = p;
filled = new boolean[up][across]; //this is if it is filled with a tri
//need to figure out a way to set
//the filled ones to "true"
}
public void paintBackground(Graphics g){ //constructor header w/no return type? passes param g
paintComponent(g);
}
public void paintComponent(Graphics g){ // mutator method w/void return type modifying object g internal state
// super.paintComponent(g); //refers to parent's method paintCompenent(call var g)
double num = Math.pow(2,pow); //exp of 2
double across; //across (row)
double up; //column
if(pow % 2 == 0){ //is a square
across = Math.pow(num,0.5);
up = across;
}
else{ //not a square
double x = Math.floor(pow/2); //largest integer less than or = to exp/2
double y = x + 1;
across = Math.pow(2,x); //row = 2^(expo)
up = Math.pow(2,y); //column = 2^(power of 2)
}
System.out.println(across);
System.out.println(up);
//
//
double wid = 400/across; //width of one
double hi = 400/up; //height of one
double nowX = 0;
double nowY = 0;
for(int i = 0; i < up; i++){ //top to bottom
nowX = 0;
for(int j = 0; j < across; j++){
g.setColor(Color.BLACK);
g.drawRect((int)nowX, (int)nowY, (int)wid, (int)hi);
if(filled[i][j] == true){ //<--how to check this using my "filled" array?
g.setColor(Color.GRAY);
g.fillRect((int)nowX, (int)nowY, (int)wid, (int)hi);
}
else{//the square is not ok
g.setColor(Color.RED);
g.fillRect((int)nowX, (int)nowY, (int)wid, (int)hi);
}
nowX = nowX + wid;
}
nowY = nowY + hi;
}
}
}
class tri{
public tri(int x, int y, int width, int height){
//initilize variables
// int x = 0;
// int y = 0;
// int width = 0;
// int height = 0;
}
public void paintTri(Graphics g){
//draw it here
}
}