Below is the code I have for a RandomForest multiclass-classification model. I am reading from a CSV file and doing various transformations as seen in the code.
I am calculating the max number of categories and then giving it as a parameter to RF. This takes a lot of time! Is there a parameter to set or an easier way to make the model automatically infer the max categories?Since it can go more than 1000 and I cannot omit them.
How do I handle unseen labels on new data for prediction since StringIndexer will not work in that case. the code below is just a split of data but I will be introducing new data as well in future
// Need to predict 2 classes val cols_to_predict=Array("Label1","Label2") // ID col val omit_cols=Array("Key") // reading the csv file val data = sqlContext.read .format("com.databricks.spark.csv") .option("header", "true") // Use first line of all files as header .option("inferSchema", "true") // Automatically infer data types .load("abc.csv") .cache() // creating a features DF by droppping the labels so that I can run all // the cols through String Indexer val features=data.drop("Label1").drop("Label2").drop("Key") // Since I do not know my max categories possible, I find it out // and use it for maxBins parameter in RF val distinct_col_counts=features.columns.map(x => data.select(x).distinct().count ).max val transformers: Array[org.apache.spark.ml.PipelineStage] = features.columns.map( cname => new StringIndexer().setInputCol(cname).setOutputCol(s"${cname}_index").fit(features) ) val assembler = new VectorAssembler() .setInputCols(features.columns.map(cname => s"${cname}_index")) .setOutputCol("features") val labelIndexer2 = new StringIndexer() .setInputCol("prog_label2") .setOutputCol("Label2") .fit(data) val labelIndexer1 = new StringIndexer() .setInputCol("orig_label1") .setOutputCol("Label1") .fit(data) val rf = new RandomForestClassifier() .setLabelCol("Label1") .setFeaturesCol("features") .setNumTrees(100) .setMaxBins(distinct_col_counts.toInt) val labelConverter = new IndexToString() .setInputCol("prediction") .setOutputCol("predictedLabel") .setLabels(labelIndexer1.labels) // Split into train and test val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3)) trainingData.cache() testData.cache() // Running only for one label for now Label1 val stages: Array[org.apache.spark.ml.PipelineStage] =transformers :+ labelIndexer1 :+ assembler :+ rf :+ labelConverter //:+ labelIndexer2 val pipeline=new Pipeline().setStages(stages) val model=pipeline.fit(trainingData) val predictions = model.transform(testData)