I want to calculate the angle between 2 vectors V = [Vx Vy Vz]
and B = [Bx By Bz]
.
is this formula correct?
VdotB = (Vx*Bx + Vy*By + Vz*Bz)
Angle = acosd (VdotB / norm(V)*norm(B))
and is there any other way to calculate it?
My question is not for normalizing the vectors or make it easier. I am asking about how to get the angle between this two vectors
Based on this link, this seems to be the most stable solution:
atan2(norm(cross(a,b)), dot(a,b))
There are a lot of options:
a1 = atan2(norm(cross(v1,v2)), dot(v1,v2))
a2 = acos(dot(v1, v2) / (norm(v1) * norm(v2)))
a3 = acos(dot(v1 / norm(v1), v2 / norm(v2)))
a4 = subspace(v1,v2)
All formulas from this mathworks thread. It is said that a3 is the most stable, but I don't know why.
For multiple vectors stored on the columns of a matrix, one can calculate the angles using this code:
% Calculate the angle between V (d,N) and v1 (d,1)
% d = dimensions. N = number of vectors
% atan2(norm(cross(V,v2)), dot(V,v2))
c = bsxfun(@cross,V,v2);
d = sum(bsxfun(@times,V,v2),1);%dot
angles = atan2(sqrt(sum(c.^2,1)),d)*180/pi;
You can compute VdotB
much faster and for vectors of arbitrary length using the dot operator, namely:
VdotB = sum(V(:).*B(:));
Additionally, as mentioned in the comments, matlab has the dot function to compute inner products directly.
Besides that, the formula is what it is so what you are doing is correct.
This function should return the angle in radians.
function [ alpharad ] = anglevec( veca, vecb )
% Calculate angle between two vectors
alpharad = acos(dot(veca, vecb) / sqrt( dot(veca, veca) * dot(vecb, vecb)));
end
anglevec([1 1 0],[0 1 0])/(2 * pi/360)
>> 45.00