Zipkin是什么
Zipkin分布式跟踪系统;它可以帮助收集时间数据,解决在microservice架构下的延迟问题;它管理这些数据的收集和查找;Zipkin的设计是基于谷歌的Google Dapper论文。spring cloud b2b2c电子商务社交平台源码请加企鹅求求:三五三六二四七二五九
每个应用程序向Zipkin报告定时数据,Zipkin UI呈现了一个依赖图表来展示多少跟踪请求经过了每个应用程序;如果想解决延迟问题,可以过滤或者排序所有的跟踪请求,并且可以查看每个跟踪请求占总跟踪时间的百分比。
为什么使用Zipkin
随着业务越来越复杂,系统也随之进行各种拆分,特别是随着微服务架构和容器技术的兴起,看似简单的一个应用,后台可能有几十个甚至几百个服务在支撑;一个前端的请求可能需要多次的服务调用最后才能完成;当请求变慢或者不可用时,我们无法得知是哪个后台服务引起的,这时就需要解决如何快速定位服务故障点,Zipkin分布式跟踪系统就能很好的解决这样的问题。
Zipkin原理
针对服务化应用全链路追踪的问题,Google发表了Dapper论文,介绍了他们如何进行服务追踪分析。其基本思路是在服务调用的请求和响应中加入ID,标明上下游请求的关系。利用这些信息,可以可视化地分析服务调用链路和服务间的依赖关系。
对应Dpper的开源实现是Zipkin,支持多种语言包括JavaScript,Python,Java, Scala, Ruby, C#, Go等。其中Java由多种不同的库来支持
Spring Cloud Sleuth是对Zipkin的一个封装,对于Span、Trace等信息的生成、接入HTTP Request,以及向Zipkin Server发送采集信息等全部自动完成。Spring Cloud Sleuth的概念图见上图。
Zipkin架构
跟踪器(Tracer)位于你的应用程序中,并记录发生的操作的时间和元数据,提供了相应的类库,对用户的使用来说是透明的,收集的跟踪数据称为Span;将数据发送到Zipkin的仪器化应用程序中的组件称为Reporter,Reporter通过几种传输方式之一将追踪数据发送到Zipkin收集器(collector),然后将跟踪数据进行存储(storage),由API查询存储以向UI提供数据。
架构图如下:
.
1.Trace
Zipkin使用Trace结构表示对一次请求的跟踪,一次请求可能由后台的若干服务负责处理,每个服务的处理是一个Span,Span之间有依赖关系,Trace就是树结构的Span集合;
2.Span
每个服务的处理跟踪是一个Span,可以理解为一个基本的工作单元,包含了一些描述信息:id,parentId,name,timestamp,duration,annotations等。
3.Transport
收集的Spans必须从被追踪的服务运输到Zipkin collector,有三个主要的传输方式:HTTP, Kafka和Scribe;
4.Components
有4个组件组成Zipkin:collector,storage,search,web UI
collector:一旦跟踪数据到达Zipkin collector守护进程,它将被验证,存储和索引,以供Zipkin收集器查找;
storage:Zipkin最初数据存储在Cassandra上,因为Cassandra是可扩展的,具有灵活的模式,并在Twitter中大量使用;但是这个组件可插入,除了Cassandra之外,还支持ElasticSearch和MySQL; 存储,zipkin默认的存储方式为in-memory,即不会进行持久化操作。如果想进行收集数据的持久化,可以存储数据在Cassandra,因为Cassandra是可扩展的,有一个灵活的模式,并且在Twitter中被大量使用,我们使这个组件可插入。除了Cassandra,我们原生支持ElasticSearch和MySQL。其他后端可能作为第三方扩展提供。
search:一旦数据被存储和索引,我们需要一种方法来提取它。查询守护进程提供了一个简单的JSON API来查找和检索跟踪,主要给Web UI使用;
web UI:创建了一个GUI,为查看痕迹提供了一个很好的界面;Web UI提供了一种基于服务,时间和注释查看跟踪的方法。
spring cloud b2b2c电子商务社交平台源码请加企鹅求求:三五三六二四七二五九