I want to calculate the average slope or gradient at each iteration in such a matrix.
a=[ 10 9 8 7 6 5 5;
9 9 8 7 8 5 5;
8 8 7 7 5 5 5;
7 7 7 6 5 5 5;
6 6 6.6 5 5 5 5;
6 6 6.1 5 5 5 5;
6.3 5 5 5 5 5 5]
Where I am wanting to find the slope or gradient between the a(1,1) position during each step and at each point that boarders a value of 5. Each iteration the position of the 5's changes and so do the other values.
After doing so I will then average the slope. I haven't encountered a problem like this yet and I could not find a Matlab command to simplify.
First you must find out which the coast elements are. From your definition, an element is a coast element if it border (from the right) with a 5. If the sea level is 5, and is the lowest possible value i.e. no element goes beyond sea level, then you must first find all the land elements as,
land=a>5;
This returns,
ans =
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 0 0 0 0 0 0
Now, the coast elements are 1s that are followed by a 0. Take the column difference of the land matrix,
coastTmp=diff(land,1,2);
returning,
ans =
0 0 0 0 -1 0
0 0 0 0 -1 0
0 0 0 -1 0 0
0 0 0 -1 0 0
0 0 -1 0 0 0
0 0 -1 0 0 0
-1 0 0 0 0 0
and find the -1s,
coast=find(coastTmp==-1);
which are,
coast =
7
19
20
24
25
29
30
From here it is easy. The gradient is the difference of a(1,1) with all the coast elements, i.e.
slope=a(coast)-a(1,1); % negative slope here
giving,
slope =
-3.700000000000000
-3.400000000000000
-3.900000000000000
-3.000000000000000
-4.000000000000000
-4.000000000000000
-2.000000000000000
and of course the mean is,
mean(slope);