I am trying to create a quadratic prediction line for a quadratic model. I am using the Auto dataset that comes with R. I had no trouble creating the prediction line for a linear model. However, the quadratic model yields crazy looking lines. Here is my code.
# Linear Model
plot(Auto$horsepower, Auto$mpg,
main = "MPG versus Horsepower",
pch = 20)
lin_mod = lm(mpg ~ horsepower,
data = Auto)
lin_pred = predict(lin_mod)
lines(
Auto$horsepower, lin_pred,
col = "blue", lwd = 2
)
# The Quadratic model
Auto$horsepower2 = Auto$horsepower^2
quad_model = lm(mpg ~ horsepower2,
data = Auto)
quad_pred = predict(quad_model)
lines(
Auto$horsepower,
quad_pred,
col = "red", lwd = 2
)
I am 99% sure that the issue is the prediction function. Why can't I produce a neat looking quadratic prediction curve? The following code I tried does not work—could it be related?:
quad_pred = predict(quad_model, data.frame(horsepower = Auto$horsepower))
Thanks!
The issue is that the x-axis
values aren't sorted. It wouldn't matter if was a linear model but it would be noticeable if it was polynomial. I created a new sorted data set and it works fine:
library(ISLR) # To load data Auto
# Linear Model
plot(Auto$horsepower, Auto$mpg,
main = "MPG versus Horsepower",
pch = 20)
lin_mod = lm(mpg ~ horsepower,
data = Auto)
lin_pred = predict(lin_mod)
lines(
Auto$horsepower, lin_pred,
col = "blue", lwd = 2
)
# The Quadratic model
Auto$horsepower2 = Auto$horsepower^2
# Sorting Auto by horsepower2
Auto2 <- Auto[order(Auto$horsepower2), ]
quad_model = lm(mpg ~ horsepower2,
data = Auto2)
quad_pred = predict(quad_model)
lines(
Auto2$horsepower,
quad_pred,
col = "red", lwd = 2
)
One option is to create the sequence of x-values for which you would like to plot the fitted lines. This can be useful if your data has a "gap" or if you wish to plot the fitted lines outside of the range of the x-variables.
# load dataset; if necessary run install.packages("ISLR")
data(Auto, package = "ISLR")
# since only 2 variables at issue, use short names
mpg <- Auto$mpg
hp <- Auto$horsepower
# fit linear and quadratic models
lmod <- lm(mpg ~ hp)
qmod <- lm(mpg ~ hp + I(hp^2))
# plot the data
plot(x=hp, y=mpg, pch=20)
# use predict() to find coordinates of points to plot
x_coords <- seq(from=floor(min(hp)), to=ceiling(max(hp)), by=1)
y_coords_lmod <- predict(lmod, newdata=data.frame(hp=x_coords))
y_coords_qmod <- predict(qmod, newdata=data.frame(hp=x_coords))
# alternatively, calculate this manually using the fitted coefficients
y_coords_lmod <- coef(lmod)[1] + coef(lmod)[2]*x_coords
y_coords_qmod <- coef(qmod)[1] + coef(qmod)[2]*x_coords + coef(qmod)[3]*x_coords^2
# add the fitted lines to the plot
points(x=x_coords, y=y_coords_lmod, type="l", col="blue")
points(x=x_coords, y=y_coords_qmod, type="l", col="red")
Alternatively, using ggplot2
:
ggplot(Auto, aes(x = horsepower, y = mpg)) + geom_point() +
stat_smooth(aes(x = horsepower, y = mpg), method = "lm", formula = y ~ x, colour = "red") +
stat_smooth(aes(x = horsepower, y = mpg), method = "lm", formula = y ~ poly(x, 2), colour = "blue")