I have this simple regression model:
y = a + b * x + c * z + error
with a constraint on parameters:
c = b - 1
There are similar questions posted on SO (like Constrained Linear Regression in Python). However, the constraints' type is lb <= parameter =< ub
.
What are the available options to handle this specific constrained linear regression problem?
This is how it can be done using GLM:
import statsmodels
import statsmodels.api as sm
import numpy as np
# Set the link function to identity
statsmodels.genmod.families.links.identity()
OLS_from_GLM = sm.GLM(y, sm.add_constant(np.column_stack(x, z)))
'''Setting the restrictions on parameters in the form of (R, q), where R
and q are constraints' matrix and constraints' values, respectively. As
for the restriction in the aforementioned regression model, i.e.,
c = b - 1 or b - c = 1, R = [0, 1, -1] and q = 1.'''
res_OLS_from_GLM = OLS_from_GLM.fit_constrained(([0, 1.0, -1.0], 1))
print(res_OLS_from_GLM.summary())