清晰和有效的3D范围树的实现(Clear And Efficient 3D Range Tree I

2019-08-04 02:04发布

我工作在这个项目上,我必须寻找在三维空间中的物体,和效率是一个巨大的关注,我觉得范围树是完美的我想要做的,间隔树也将工作,但我不打算从树上删除任何东西,有一次我在三维空间中添加的每个对象,我将只使用结构做搜索。

下面是我要如何使用结构:

让说,我有一个数组(姑且称之为queryArr)对象(〜10,000个对象),每个对象有3个参数(X,Y,Z)我有另外一个非常大的阵列(姑且称之为totalArr)对象(> 500万点的对象)。

我想在这里做的是给queryArr的元素,找到最相似(或totalArr相同的元素),在某些情况下会出现与totalArr相同参数的对象,但在大多数情况下,不会有是具有相同的参数的对象。

所以,我会在搜索之间的所有值(x+10,y+10,z+10)(x-10,y-10,z-10) 如果它不产生任何结果,我会乘以2的x,y,z和再试,直到它产生了一定的成效。

这样做的简单的方式是一个幼稚搜索方法,该方法将具有复杂O(N*M) (N = size of queryArr, M = sie of totalArr)但是这种方法是非常缓慢和哑。

我觉得范围树的是要走的路,但我从来没有实现一个自己,我不太了解的范围内树是如何工作的尺寸比2更大,所以没有人知道一个良好的实施范围内的树木? 我相信,如果我能有一个源代码,我就能了解他们到底是如何工作。

通过你的思维方式,还有比范围树完成这个任务,结构更合理,让我知道我很开放的建议。 (我已经考虑KD树和树木间隔)

谢谢,

Answer 1:

我刚才读维基百科的文章。 让我们看看,如果我能写的n维范围树。 因为什么值得在3个维度做的是值得做的事情在正。

所以一个n维范围树的基本部分是,它可以在低维范围树术语来递归地定义。

有些物业类与相对通用的值类型的工作。 专营element_properties<T>来设置标量类型的任何你的n维值,和专门get<i>(T const&)以获得i个您的n维值的尺寸。

#include <memory>
#include <cstddef>
#include <vector>
#include <iostream>
#include <algorithm>
#include <string>
#include <sstream>

void Assert(bool test) {
  if (!test)
  {
    std::cout << "Assert failed" << std::endl;
    exit(-1);
  }
}
template<typename... Args>
struct Print {
  static void Do(Args... args) {}
};
template<typename Arg, typename... Tail>
struct Print<Arg, Tail...> {
  static void Do(Arg arg, Tail... args) {
      std::cout << arg;
      Print<Tail...>::Do(args...);
  }
};
template<typename... Args>
void Debug(Args... args) {
    std::cout << "DEBUG:[";
    Print<Args...>::Do(args...);
    std::cout << "]\n";
}

template<typename T>
struct element_properties {
  typedef typename T::value_type value_type;
};
template<>
struct element_properties<int> {
  typedef int value_type;
};
template<size_t d, typename T>
typename element_properties<T>::value_type get( T const & t );

template<size_t d>
typename element_properties<int>::value_type get( int i ) { return i; }

template<size_t d, typename U, typename A>
typename element_properties<std::vector<U,A>>::value_type get( std::vector<U,A> const& v) {
  return v[d];
}

template<typename T, size_t dim, typename Order = std::less< typename element_properties<T>::value_type> >
struct range_tree {
  typedef typename element_properties<T>::value_type value_type;
  struct sorter {
    bool operator()( T const& left, T const& right ) const {
      return Order()( get<dim-1>(left), get<dim-1>(right) );
    }
  };
  struct printer {
    std::string operator()( T const& t ) const {
      std::string retval = "[ ";
      retval += print_elements( t );
      retval += "]";
      return retval;
    }
    std::string print_elements( T const& t ) const {
      std::stringstream ss;
      typedef typename range_tree<T, dim-1, Order>::printer next_printer;
      ss << next_printer().print_elements(t);
      ss << get<dim-1>(t) << " ";
      return ss.str();
    }
  };
  template<typename Iterator>
  range_tree( Iterator begin, Iterator end ) {
    std::sort( begin, end, sorter() );
    root.reset( new tree_node( begin, end ) );
  }

  template<size_t n, typename Func>
  void walk(Func f) const {
      if (root) root->walk<n>(f);
  }
  template<size_t n, typename Func>
  void walk(Func f) {
      if (root) root->walk<n>(f);
  }
  struct tree_node {
    std::unique_ptr< range_tree<T, dim-1, Order> > subtree;
    T value;
    template<size_t n, typename Func>
    void walk(Func f) const {
      if (n==dim && !left && !right)
        f(value);
      if (left)
        left->walk<n>(f);
      if (right)
        right->walk<n>(f);
      if (subtree)
        subtree->walk<n>(f);
    }
    template<size_t n, typename Func>
    void walk(Func f) {
      if (n==dim && !left && !right)
        f(value);
      if (left)
        left->walk<n>(f);
      if (right)
        right->walk<n>(f);
      if (subtree)
        subtree->walk<n>(f);
    }
    void find_path( T const& t, std::vector< tree_node const* >& vec ) {
      vec.push_back(this);
      if ( sorter()(t, value) ) {
        if (left)
          left->find_path(t, vec);
      } else if (sorter()(value, t)) {
        if (right)
          right->find_path(t, vec);
      } else {
        // found it!
        return;
      }
    }
    std::vector< tree_node const* > range_search( T const& left, T const& right )
    {
      std::vector<tree_node const*> left_path;
      std::vector<tree_node const*> right_path;
      find_path( left, left_path );
      find_path( right, right_path );
      // erase common path:
      {
        auto it1 = left_path.begin();
        auto it2 = right_path.begin();
        for( ; it1 != left_path.end() && it2 != right_path.end(); ++it1, ++it2) {
          if (*it1 != *it2)
          {
            Debug( "Different: ", printer()( (*it1)->value ), ", ", printer()( (*it2)->value ) );
            break;
          }

          Debug( "Identical: ", printer()( (*it1)->value ), ", ", printer()( (*it2)->value ) );
        }
        // remove identical prefixes:
        if (it2 == right_path.end() && it2 != right_path.begin())
            --it2;
        if (it1 == left_path.end() && it1 != left_path.begin())
            --it1;
        right_path.erase( right_path.begin(), it2 );
        left_path.erase( left_path.begin(), it1 );
      }
      for (auto it = left_path.begin(); it != left_path.end(); ++it) {
        if (*it && (*it)->right) {
          Debug( "Has right child: ", printer()( (*it)->value ) );
          *it = (*it)->right.get();
          Debug( "It is: ", printer()( (*it)->value ) );
        } else {
          Debug( "Has no right child: ", printer()( (*it)->value ) );
          if ( sorter()( (*it)->value, left) || sorter()( right, (*it)->value) ) {
            Debug( printer()( (*it)->value ), "<", printer()( left ), " so erased" );
            *it = 0;
          }
        }
      }
      for (auto it = right_path.begin(); it != right_path.end(); ++it) {
        if (*it && (*it)->left) {
          Debug( "Has left child: ", printer()( (*it)->value ) );
          *it = (*it)->left.get();
          Debug( "It is: ", printer()( (*it)->value ) );
        } else {
          Debug( "Has no left child: ", printer()( (*it)->value ) );
          if ( sorter()( (*it)->value, left) || sorter()( right, (*it)->value) ) {
            Debug( printer()( right ), "<", printer()( (*it)->value ), " so erased" );
            *it = 0;
          }
        }
      }
      left_path.insert( left_path.end(), right_path.begin(), right_path.end() );
      // remove duds and duplicates:
      auto highwater = std::remove_if( left_path.begin(), left_path.end(), []( tree_node const* n) { return n==0; } );
      std::sort( left_path.begin(), highwater );
      left_path.erase( std::unique( left_path.begin(), highwater ), left_path.end() );
      return left_path;
    }

    std::unique_ptr<tree_node> left;
    std::unique_ptr<tree_node> right;
    // rounds down:
    template<typename Iterator>
    static Iterator middle( Iterator begin, Iterator end ) {
      return (end-begin-1)/2 + begin ;
    }
    template<typename Iterator>
    tree_node( Iterator begin, Iterator end ):value(*middle(begin,end)) {
      Debug( "Inserted ", get<dim-1>(value), " at level ", dim );
      Iterator mid = middle(begin,end);
      Assert( begin != end );
      if (begin +1 != end) { // not a leaf
        Debug( "Not a leaf at level ", dim );
        ++mid; // so *mid was the last element in the left sub tree 
        Assert(mid!=begin);
        Assert(mid!=end);
        left.reset( new tree_node( begin, mid ) );
        right.reset( new tree_node( mid, end ) );
      } else {
        Debug( "Leaf at level ", dim );
      }
      if (dim > 0) {
        subtree.reset( new range_tree<T, dim-1, Order>( begin, end ) );
      }
    }
  };
  std::unique_ptr<tree_node> root;
};
// makes the code above a tad easier:
template<typename T, typename Order >
struct range_tree< T, 0, Order > {
  typedef typename element_properties<T>::value_type value_type;
  struct printer { template<typename Unused>std::string print_elements(Unused const&) {return std::string();} };
  range_tree(...) {};
  struct tree_node {}; // maybe some stub functions in here
  template<size_t n, typename Func>
  void walk(Func f) {}
};

int main() {
  typedef std::vector<int> vector_type;
  std::vector<vector_type> test;
  test.push_back( vector_type{5,2} );
  test.push_back( vector_type{2,3} );
  range_tree< vector_type, 2 > tree( test.begin(), test.end() );
  std::cout << "Walking dim 2:";
  auto print_node = [](vector_type const& v){ std::cout << "(" << v[0] << "," << v[1] << ")"; };
  tree.walk<2>( print_node );
  std::cout << "\nWalking dim 1:";
  tree.walk<1>( print_node );
  std::cout << "\n";

  std::cout << "Range search from {3,3} to {10,10}\n";
  auto nodes = tree.root->range_search( vector_type{3,3}, vector_type{10,10} );
  for (auto it = nodes.begin(); it != nodes.end(); ++it)
  {
    (*it)->walk<2>( print_node );
  }
}

这真的是太接近n维范围树。 0维度树自然包含什么。

基础设施,以搜索(在一个一维时间),现在已被添加。 您可以手动执行递归进入较低的尺寸,或者向上,以便在range_search总是返回平1 tree_node*秒。



文章来源: Clear And Efficient 3D Range Tree Implementation