I got two big data frames, one (df1
) has this structure
chr init
1 12 25289552
2 3 180418785
3 3 180434779
The other (df2
) has this
V1 V2 V3
10 1 69094 medium
11 1 69094 medium
12 12 25289552 high
13 1 69095 medium
14 3 180418785 medium
15 3 180434779 low
What I'm trying to do is to add the column V3
of df2
to df1
, to get the info of the mutation
chr init Mut
1 12 25289552 high
2 3 180418785 medium
3 3 180434779 low
I'm trying loading both into R and then doing a for loop using match but it doesn't work. Do you know any special way to do this? I am also open to do using awk or something similar
Use merge
df1 <- read.table(text=' chr init
1 12 25289552
2 3 180418785
3 3 180434779', header=TRUE)
df2 <- read.table(text=' V1 V2 V3
10 1 69094 medium
11 1 69094 medium
12 12 25289552 high
13 1 69095 medium
14 3 180418785 medium
15 3 180434779 low', header=TRUE)
merge(df1, df2, by.x='init', by.y='V2') # this works!
init chr V1 V3
1 25289552 12 12 high
2 180418785 3 3 medium
3 180434779 3 3 low
To get your desired output the way you show it
output <- merge(df1, df2, by.x='init', by.y='V2')[, c(2,1,4)]
colnames(output)[3] <- 'Mut'
output
chr init Mut
1 12 25289552 high
2 3 180418785 medium
3 3 180434779 low
df1 <- read.table(textConnection(" chr init
1 12 25289552
2 3 180418785
3 3 180434779"), header=T)
df2 <- read.table(textConnection(" V1 V2 V3
10 1 69094 medium
11 1 69094 medium
12 12 25289552 high
13 1 69095 medium
14 3 180418785 medium
15 3 180434779 low"), header=T)
# You have to select the values of df2$V3 such as their corresponding V2
# are equal to the values of df1$init
df1$Mut <- df2$V3[ df2$V2 %in% df1$init]
df1
chr init Mut
1 12 25289552 high
2 3 180418785 medium
3 3 180434779 low
Does
df3 <- merge( df1, df2, by.x = "init", by.y = "V2" )
df3 <- df3[-3]
colnames( df3 )[3] <- "Mut"
give you what you want?
@user976991 comment worked for me.
Same idea but need to match on two columns.
My domain context is a product database with multiple entries (potentially price entries). Want to drop the older update_nums and only keep the most recent by product_id.
raw_data <- data.table( product_id = sample(10:13, 20, TRUE), update_num = sample(1:3, 20, TRUE), stuff = rep(1, 20, sep = ''))
max_update_nums <- raw_data[ , max(update_num), by = product_id]
distinct(merge(dt, max_update_nums, by.x = c("product_id", "update_num"), by.y = c("product_id", "V1")))